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Abstract 
A common operation done on databases is filtering: taking a 
set of items and finding the subset that satisfies certain re-
strictions. Crowdsourcing can be applied to evaluate subjec-
tive or complex restrictions. We divide the filtering process 
by separating a user’s query into multiple restrictions that 
crowd workers can evaluate on each item. We then dynami-
cally order those items and restrictions to reduce how many 
must be asked. We evaluate our technique using simulations 
based on data from Amazon’s Mechanical Turk and present 
preliminary results. 

 Introduction   
We are studying the efficient use of crowdsourcing to filter 
databases. The filtering process consists of applying a set 
of restrictions, called predicates, onto each item in a data-
base that can be evaluated to either true or false. Items that 
satisfy all predicates are said to pass the filter. 
 We employ crowd workers to evaluate predicates that 
require them to reason subjectively and search for infor-
mation. We use Amazon’s Mechanical Turk (MTurk), a 
platform where requesters recruit workers to work on Hu-
man Intelligence Tasks (HITs). In each HIT, workers vote 
on whether an item is true or false for a given predicate.  
 The more difficult or subjective the predicate, the more 
votes we need to gather from workers in order to be certain 
that the majority answer is the correct answer. Thus harder 
or more ambiguous predicates lead to increased monetary 
cost and completion time. We hypothesize that the number 
of votes needed to process all items can be reduced by pri-
oritizing predicates for which items are likely to be false, 
or in other words, prioritizing highly selective predicates. 
We define the selectivity of a predicate as the fraction of 
items that are false for that predicate. Prioritizing selective 
predicates reduces the number of votes because if an item 
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is false for one predicate, it has already failed the filter and 
does not need to be evaluated with other predicates. How-
ever, we initially have no information about predicate se-
lectivity, so our algorithm must learn and adapt as we 
gather votes from crowd workers. 
 In this work-in-progress, we describe our algorithm and 
evaluate how well it reorders predicates to reduce the cost 
of processing all items in the database. We test our algo-
rithm with data from MTurk and discuss future work. 

Overview of Data Flow 
Database filtering can be thought of as items from a data-
base flowing through a data processing pipeline where they 
are evaluated with various predicates to determine if they 
meet the restrictions of the filter. In our approach, we adapt 
the concept of an eddy (Avnur and Hellerstein 2000), a 
mechanism for dynamically rearranging parts of the pipe-
line. Items to be filtered are held in a queue outside the 
eddy. Each item flows into the eddy and is routed to a 
predicate, chosen by the algorithm described in the next 
section. A HIT is generated to ask an MTurk worker 
whether the item satisfies the predicate. The worker sub-
mits one vote for the item-predicate pair using a seven-
point scale that captures a true or false value and a confi-
dence level; the ends of the scale are “Yes (totally sure)” 
and “No (totally sure)”. If there are not at least five votes 
for the item-predicate pair, the item returns to the queue.  
 Once five votes have been collected, we need to aggre-
gate all votes for that item-predicate pair by estimating the 
certainty that the majority answer is the correct answer. We 
apply previous work on selective repeated-labeling (Sheng, 
Provost, and Ipeirotis 2008) to determine whether more 
votes are needed to reach consensus. If the uncertainty is 
high, the item is returned to the queue to collect two more 
votes. An item is done being processed once a predicate 
evaluates to false, or after all predicates are evaluated.  



Adaptive Algorithm for Predicate Selection 
To choose a predicate for an item, a lottery is held among 
the item’s remaining predicates, with each predicate 
awarded a number of tickets proportional to its selectivity. 
 We do not know a priori which predicates are the most 
selective, so we estimate selectivity as the ratio of “false” 
votes to total votes for a given predicate. Our algorithm 
must continually update its estimates as more votes are 
entered. This process of choosing a predicate resembles a 
traditional Multi-Armed Bandit problem (Auer et al. 1995). 
We want to balance “exploiting” the predicate with the 
highest selectivity with “exploring” all the predicates. We 
found that the simple lottery system described above “ex-
plored” too much. To compensate, we use a multiplicative 
factor of two to increase the number of tickets for the most 
selective predicate, so that it is favored more strongly. This 
factor is a heuristic that we are continuing to explore to 
find an optimal strategy. We also “fast-track” an item to a 
predicate, bypassing the lottery, if its consensus uncertain-
ty is below a threshold and the item is likely to be false. 

Experimental Results 
In this section, we describe how our adaptive algorithm 
performs with predicates of varying selectivity and show 
that it is more efficient than our baseline, a random order-
ing. The metric of interest is the number of HITs needed to 
process all the items. 
 For these initial results, we simulate the eddy process 
using votes gathered from MTurk workers. We first gener-
ated a database of 20 restaurants and devised a set of 10 
predicates to filter restaurants with. We then collected a 
data set of votes by having workers evaluate the restaurant-
predicate pairs, collecting 30 votes each. We researched 
the restaurants to determine ground truth. 
 We run our algorithm by simulating worker votes by 
sampling votes with replacement from the data gathered 
from MTurk. We set the uncertainty thresholds for vote 
consensus and fast-tracking to 0.15 and 0.3, respectively. 
When calculating uncertainty, we weight votes by workers’ 
indicated confidence level. 
 

Predicate Selectivity 

Does this restaurant serve Chinese food? 95% 

Is this restaurant open until midnight? 95% 

Does this restaurant have its own website? 5% 

Table 1: The three predicates used in the simulation, along with 
their selectivities 

 

Figure 1: Fraction of items processed versus number of votes for 
the adaptive eddy algorithm and the random-ordering algorithm 

 Figure 1 shows the averaged results of 1000 simulation 
runs using the three predicates specified in Table 1 for our 
adaptive algorithm and a random-ordering algorithm. Our 
adaptive algorithm filtered all the items on average 130 
votes quicker than the random algorithm. Of course, the 
number of votes may vary depending on the predicates 
used. Of the ten predicates, these three were the least am-
biguous and therefore well suited to first investigate the 
impact of predicate selectivity. We compared predicate 
ambiguity using the average entropy: first computing the 
entropy across the 30 votes for each restaurant-predicate 
pair, and then averaging the entropy values grouped by 
predicate. Additional simulations with different predicate 
combinations, omitted due to space, also show the adaptive 
algorithm out-performing the random algorithm. 

Next Steps 
We have several plans for next steps. First, we want to 
gather more sets of votes from MTurk about restaurants for 
predicates of different selectivities and ambiguities to 
evaluate the generality of our initial results. We also plan 
to do a sensitivity analysis of the algorithm’s parameters, 
as well as compare to an “optimal” algorithm that knows 
the true predicate selectivity (Parameswaran et al. 2012). 
Finally, we plan to run our algorithm live on MTurk, post-
ing HITs and gathering votes from workers in real time. 

References 
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R.E. 1995. 
Gambling in a Rigged Casino: The Adversarial Multi-armed 
Bandit Problem. In Proceedings of the 36th Annual Symposium 
on Foundations of Computer Science. IEEE Computer Society. 
Avnur, R. and Hellerstein, J. M. 2000. Eddies: Continuously 
Adaptive Query Processing. In Proceedings of SIGMOD. ACM. 
Parameswaran, Aditya, et al. 2012. Crowdscreen: Algorithms for 
filtering data with humans. In Proceedings of SIGMOD. ACM. 
Sheng, V.; Provost, F.; Ipeirotis, P. 2008. Get Another Label? 
Improving Data Quality and Data Mining Using Multiple, Noisy 
Labelers. In Proceedings of the 14th ACM SIGKDD. ACM. 


