

Dynamic Filter: An Adaptive Algorithm for for Processing Data with the
Crowd

Katherine Reed Austin Shin Beth Trushkowsky
Harvey Mudd College

kireed@hmc.edu, ashin@hmc.edu, beth@cs.hmc.edu

Abstract
A common operation done on databases is filtering: taking a
set of items and finding the subset that satisfies certain re-
strictions. Crowdsourcing can be applied to evaluate subjec-
tive or complex restrictions. We divide the filtering process
by separating a user’s query into multiple restrictions that
crowd workers can evaluate on each item. We then dynami-
cally order those items and restrictions to reduce how many
must be asked. We evaluate our technique using simulations
based on data from Amazon’s Mechanical Turk and present
preliminary results.

 Introduction
We are studying the efficient use of crowdsourcing to filter
databases. The filtering process consists of applying a set
of restrictions, called predicates, onto each item in a data-
base that can be evaluated to either true or false. Items that
satisfy all predicates are said to pass the filter.
 We employ crowd workers to evaluate predicates that
require them to reason subjectively and search for infor-
mation. We use Amazon’s Mechanical Turk (MTurk), a
platform where requesters recruit workers to work on Hu-
man Intelligence Tasks (HITs). In each HIT, workers vote
on whether an item is true or false for a given predicate.
 The more difficult or subjective the predicate, the more
votes we need to gather from workers in order to be certain
that the majority answer is the correct answer. Thus harder
or more ambiguous predicates lead to increased monetary
cost and completion time. We hypothesize that the number
of votes needed to process all items can be reduced by pri-
oritizing predicates for which items are likely to be false,
or in other words, prioritizing highly selective predicates.
We define the selectivity of a predicate as the fraction of
items that are false for that predicate. Prioritizing selective
predicates reduces the number of votes because if an item

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is false for one predicate, it has already failed the filter and
does not need to be evaluated with other predicates. How-
ever, we initially have no information about predicate se-
lectivity, so our algorithm must learn and adapt as we
gather votes from crowd workers.
 In this work-in-progress, we describe our algorithm and
evaluate how well it reorders predicates to reduce the cost
of processing all items in the database. We test our algo-
rithm with data from MTurk and discuss future work.

Overview of Data Flow
Database filtering can be thought of as items from a data-
base flowing through a data processing pipeline where they
are evaluated with various predicates to determine if they
meet the restrictions of the filter. In our approach, we adapt
the concept of an eddy (Avnur and Hellerstein 2000), a
mechanism for dynamically rearranging parts of the pipe-
line. Items to be filtered are held in a queue outside the
eddy. Each item flows into the eddy and is routed to a
predicate, chosen by the algorithm described in the next
section. A HIT is generated to ask an MTurk worker
whether the item satisfies the predicate. The worker sub-
mits one vote for the item-predicate pair using a seven-
point scale that captures a true or false value and a confi-
dence level; the ends of the scale are “Yes (totally sure)”
and “No (totally sure)”. If there are not at least five votes
for the item-predicate pair, the item returns to the queue.
 Once five votes have been collected, we need to aggre-
gate all votes for that item-predicate pair by estimating the
certainty that the majority answer is the correct answer. We
apply previous work on selective repeated-labeling (Sheng,
Provost, and Ipeirotis 2008) to determine whether more
votes are needed to reach consensus. If the uncertainty is
high, the item is returned to the queue to collect two more
votes. An item is done being processed once a predicate
evaluates to false, or after all predicates are evaluated.

Adaptive Algorithm for Predicate Selection
To choose a predicate for an item, a lottery is held among
the item’s remaining predicates, with each predicate
awarded a number of tickets proportional to its selectivity.
 We do not know a priori which predicates are the most
selective, so we estimate selectivity as the ratio of “false”
votes to total votes for a given predicate. Our algorithm
must continually update its estimates as more votes are
entered. This process of choosing a predicate resembles a
traditional Multi-Armed Bandit problem (Auer et al. 1995).
We want to balance “exploiting” the predicate with the
highest selectivity with “exploring” all the predicates. We
found that the simple lottery system described above “ex-
plored” too much. To compensate, we use a multiplicative
factor of two to increase the number of tickets for the most
selective predicate, so that it is favored more strongly. This
factor is a heuristic that we are continuing to explore to
find an optimal strategy. We also “fast-track” an item to a
predicate, bypassing the lottery, if its consensus uncertain-
ty is below a threshold and the item is likely to be false.

Experimental Results
In this section, we describe how our adaptive algorithm
performs with predicates of varying selectivity and show
that it is more efficient than our baseline, a random order-
ing. The metric of interest is the number of HITs needed to
process all the items.
 For these initial results, we simulate the eddy process
using votes gathered from MTurk workers. We first gener-
ated a database of 20 restaurants and devised a set of 10
predicates to filter restaurants with. We then collected a
data set of votes by having workers evaluate the restaurant-
predicate pairs, collecting 30 votes each. We researched
the restaurants to determine ground truth.
 We run our algorithm by simulating worker votes by
sampling votes with replacement from the data gathered
from MTurk. We set the uncertainty thresholds for vote
consensus and fast-tracking to 0.15 and 0.3, respectively.
When calculating uncertainty, we weight votes by workers’
indicated confidence level.

Predicate Selectivity

Does this restaurant serve Chinese food? 95%

Is this restaurant open until midnight? 95%

Does this restaurant have its own website? 5%

Table 1: The three predicates used in the simulation, along with
their selectivities

Figure 1: Fraction of items processed versus number of votes for
the adaptive eddy algorithm and the random-ordering algorithm

 Figure 1 shows the averaged results of 1000 simulation
runs using the three predicates specified in Table 1 for our
adaptive algorithm and a random-ordering algorithm. Our
adaptive algorithm filtered all the items on average 130
votes quicker than the random algorithm. Of course, the
number of votes may vary depending on the predicates
used. Of the ten predicates, these three were the least am-
biguous and therefore well suited to first investigate the
impact of predicate selectivity. We compared predicate
ambiguity using the average entropy: first computing the
entropy across the 30 votes for each restaurant-predicate
pair, and then averaging the entropy values grouped by
predicate. Additional simulations with different predicate
combinations, omitted due to space, also show the adaptive
algorithm out-performing the random algorithm.

Next Steps
We have several plans for next steps. First, we want to
gather more sets of votes from MTurk about restaurants for
predicates of different selectivities and ambiguities to
evaluate the generality of our initial results. We also plan
to do a sensitivity analysis of the algorithm’s parameters,
as well as compare to an “optimal” algorithm that knows
the true predicate selectivity (Parameswaran et al. 2012).
Finally, we plan to run our algorithm live on MTurk, post-
ing HITs and gathering votes from workers in real time.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R.E. 1995.
Gambling in a Rigged Casino: The Adversarial Multi-armed
Bandit Problem. In Proceedings of the 36th Annual Symposium
on Foundations of Computer Science. IEEE Computer Society.
Avnur, R. and Hellerstein, J. M. 2000. Eddies: Continuously
Adaptive Query Processing. In Proceedings of SIGMOD. ACM.
Parameswaran, Aditya, et al. 2012. Crowdscreen: Algorithms for
filtering data with humans. In Proceedings of SIGMOD. ACM.
Sheng, V.; Provost, F.; Ipeirotis, P. 2008. Get Another Label?
Improving Data Quality and Data Mining Using Multiple, Noisy
Labelers. In Proceedings of the 14th ACM SIGKDD. ACM.

