
Reactive Learning: Actively Trading off Larger Noisier Training Sets Against
Smaller Cleaner Ones

Christopher H. Lin
University of Washington

Seattle, WA
chrislin@cs.washington.edu

Mausam
Indian Institute of Technology

Delhi, India
mausam@cse.iitd.ac.in

Daniel S. Weld
University of Washington

Seattle, WA
weld@cs.washington.edu

Abstract

One of the most popular uses of crowdsourcing is to provide
training data for supervised machine learning algorithms. Be-
cause of imperfect workers, requesters commonly ask multi-
ple workers to redundantly label each example. When the
goal is to train the best classifier at the lowest cost, active
learning can intelligently pick new examples to label. How-
ever, active learning fails to address a fundamental tradeoff.
Instead of always gathering new labels for new examples, we
can also relabel, by gathering more labels for old, labeled
examples. In this paper, we introduce the new problem of re-
active learning, a generalization of active learning in which
we seek to understand the difference in marginal value be-
tween decreasing the noise of a training set, via relabeling,
and increasing the size and diversity of a noisier training set,
via labeling new examples. We show how traditional active
learning does not suffice for reactive learning, present new
algorithms designed for this new problem, and empirically
show that these algorithms can effectively make this tradeoff.

Preliminaries Let X denote the space of examples, Y =
{0, 1} a set of labels, XL ⊆ X the set of examples for
which we currently have labels, XU ⊆ X denote the set
of unlabeled examples, and for each xi ∈ X let l(xi) =
{l1i , . . . , l

τi
i } be the multiset of labels for that example,

where τi is the number of labels we have for xi. Let f(l(xi))
output an aggregated label (e.g., majority vote) for an exam-
ple given the noisy labels for that example. We train us-
ing XL and the corresponding aggregated labels output by
f . Acquiring a label incurs a fixed unit cost. We assume
that each worker exhibits the same accuracy a ∈ (0.5, 1],
and that worker errors are independent and that a is known.
Given the current l, the goal of reactive learning is to select
an example x ∈ X (not x ∈ XU , as in traditional active
learning) such that acquiring a label for x and adding it to l
minimizes the long-term error of the trained classifier.

Uncertainty Sampling Uncertainty sampling Lewis &
Catlett (1994) is one of the most popular algorithms for ac-
tive learning Settles (2012). To pick the next example to
label, it simply computes a measure of the classifier’s un-
certainty (e.g., margin-based, entropy) for each example in
the unlabeled set, XU , and then returns the most uncertain

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one. We denote as US uncertainty sampling that returns the
x ∈ XU with highest entropy.

We can directly apply uncertainty sampling to reactive
learning by allowing it to sample from both XU and XL. Let
this algorithm be denoted Re-US. Unfortunately, Re-US
can result in extremely poor performance. The problem is
that in many cases, the most uncertain example (according
to the classifier) will be a labeled example that we actually
are certain about (according to the labels we have). For in-
stance, suppose Re-US returns a point xi close to the deci-
sion boundary of our classifier. But suppose further that this
point has already been labeled a large number of times (τi is
large). Relabeling this point is an extremely poor idea, since
requesting another label will be highly unlikely to change
the aggregated label f(l(xi)), resulting in no change to the
classifier, resulting in the same point being queried at the
next time-step, forming an infinite loop during which no
learning takes place.

Clearly, any reactive learning algorithm needs to consider
both the classifier’s uncertainty, which we now denote MC ,
and the label’s uncertainty, which we denote ML. Thus,
we propose a new uncertainty measure, which is a weighted
average of these two uncertainties: (1 − α)MC + αML,
where α ∈ [0, 1]. We define ML(xi) as follows. For every
example xi, we compute label posteriors P (h∗(xi) | l(xi))
by applying Bayes’ rule to the observed labels. Then, we
use the entropy of these posteriors as the label’s uncertainty:
ML(xi) = −

∑
y∈Y P (h∗(xi) = y | l(xi)) logP (h∗(xi) =

y | l(xi)). We denote this new algorithm Re-US(α).

Impact Sampling Whereas our previous uncertainty sam-
pling algorithm explicitly considers the knowledge con-
tained in both the classifier and the labels, the class of im-
pact sampling algorithms takes an indirect approach. Im-
pact sampling algorithms simply pick the next example to
(re)label that will impact the classifier the most, the intu-
ition being that an example that heavily impacts the learned
classifier must be a good example. Algorithm 1 describes
the framework for computation of the impact of an example
x. Different instantiations of impact sampling implement
retrain and weightedImpact in various ways, which
we now describe.

Optimism The most straightforward way to implement
weightedImpact is to use the label posteriors (computed



Algorithm 1 Impact Sampling
Input: Classifier C, Example x ∈ X , Unlabeled Exam-
ples XU , Labeled Examples XL and their corresponding
aggregated labels as given by f and l.
Initialize impact0 = 0, impact1 = 0.
h = retrain(C,XL, f, l, , )
h1 = retrain(C,XL, f, l, x, 1).
h0 = retrain(C,XL, f, l, x, 0).
for xi ∈ XU ∪ XL do

if h0(xi) 6= h(xi) then
impact0 = impact0 + 1

end if
if h1(xi) 6= h(xi) then
impact1 = impact1 + 1

end if
end for
Return weightedImpact(impact0, impact1)

using the classifier’s beliefs as a prior) to compute an expec-
tation of impact0 and impact1:

∑
y∈Y [aP (h∗(xi) = y |

l(xi)) + (1 − a)P (h∗(xi) 6= y | l(xi))] · impacty(xi). We
denote these impact sampling algorithms with EXP. How-
ever, when training a classifier with noisy labels, the learned
classifier may output beliefs that cannot be trusted. In these
cases, injecting impact sampling with some optimism can
be helpful. We can implement weightedImpact so that
instead of returning an expected impact, it returns the maxi-
mum impact: max(impact0, impact1). Taking a maximum
makes impact sampling optimistic in that now it assumes the
largest possible impact for any given example. We denote
impact sampling with optimism with OPT.

Pseudo-Lookahead The most straightforward way to im-
plement retrain is to simply add the new fake labels that
we pretend to have received for xi into the multiset l(xi).
Thus, the algorithm is myopic in that for certain multisets,
adding this additional label may have no effect on the ag-
gregated label f(l(xi)) at all, and consequently no effect on
the learned classifier. For example, if we are using majority
vote as f and we currently have 3 votes in favor of the label
1 and 1 vote in favor of the label 0, one additional vote for
0 will result in an impact0 of 0. Myopicity is problematic
because training the classifier optimally may require gather-
ing multiple labels for the same example. To alleviate this
problem, we can introduce the ability to perform a “pseudo-
lookahead.”

Whenever we are considering an example xi ∈ XL
from the labeled set (we never have the myopicity prob-
lem when we are considering a new unlabeled example),
we implement the retrain function so that instead of just
adding the new label lnewi into the current multiset l(xi),
we ensure that the classifier is trained with lnewi as the ag-
gregated label, instead of f(l(xi)). Then, we implement
weightedImpact so that we divide the computed im-
pact of that label, impactlnew

i
, by the minimum of 1 and

the smallest number of additional worker labels that would
have been needed to flip the aggregated label f(l(xi)). Intu-
itively, we are effectively computing a normalized impact of

Figure 1: Generalization accuracy of logistic regression
when trained using various impact sampling and uncertainty
sampling strategies.

another label lnewi , given we train C with lnewi . We denote
algorithms that use pseudo-lookahead with PL.

Experiments To reduce computational costs, we only al-
low impact sampling to choose among two points instead
of X : the point recommended by US, and the point rec-
ommended by US applied to only XL. We also try ver-
sions that can choose among seven points: the two points
as before, and the five points returned by Re-US(α) where
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We train an l2-regularized logistic regression. We use a
synthetic domain that contains two random Gaussian clus-
ters, which correspond to two classes. We generate a dataset
by randomly picking two means, µ1, µ2 ∈ [0, 1]k, and two
corresponding covariance matrices Σ1,Σ2 ∈ [0, 1]k×k. For
each Gaussian cluster (class), we generate 1,000 examples.
All experiments are averaged over 1,000 random datasets.
We set k = 90 features. We seed training with 50 examples,
use a total budget of 1,000, and test on 300 examples. We
set worker accuracy to 0.75%.

Figure 1 compares impact sampling to uncertainty sam-
pling. We see that even impactEXP, the weakest impact
sampling strategy, strictly dominates US, the most popular
active learning method, in the setting of reactive learning.
We also see that impactPLOPT(7) is quite close to the ac-
curacy of US-perfect, which runs US with perfect data,
providing a benchmark on achievable accuracy. We repeated
these experiments using another synthetic dataset with three
Gaussian clusters, and found extremely similar results.

References
Lewis, David D. and Catlett, Jason. Heterogeneous uncer-

tainty sampling for supervised learning. In ICML, 1994.
Settles, Burr. Active Learning. Synthesis Lectures on Artifi-

cial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers, 2012.


