

Crowdsourcing Crowdsourcing: Using Developers in the Crowd to
Contribute Code to a Crowdsourcing Platform

Anand Kulkarni, Max Mautner, Brianna Salinas, Andy Schriner, Egor Vinogradov

LeadGenius

anand | max | brianna | andy | egor@leadgenius.com

Abstract

Crowd members drawn from international communities of-
ten possess a variety of unexpected skills, including pro-
gramming and software engineering. At LeadGenius, we
found that crowd workers with technical skills independent-
ly and regularly developed useful tools to enhance their own
workflows and disseminated these to other crowd workers.
We compare the utility of allowing the crowd to design and
develop tools to directing suitable members of the crowd to
develop tools under direction. Next, we make design rec-
ommendations for how crowd workers can be usefully har-
nessed in the development of a crowd engine.

Introduction
In this work, we explore how individuals working within a
crowd platform can be usefully harnessed to make tech-
nical improvements to the platform. The initial motivation
for this work came from our observation that crowd work-
ers in the LeadGenius platform [6] independently and
without direction produced and disseminated a variety of
tools to make their own workflows more efficient. Follow-
ing that discovery, we recruited a number of crowd work-
ers and attempted to incorporate them into our standard
software development process to build improvements to
the platform under our own direction. We share initial
observations of the crowd-developed tools, and some ini-
tial results from our experiments in working with members
of this crowd in contributing to the crowd platform.

Related Work
Crowd work has been moving steadily into more complex
and sophisticated domains. Prior efforts to crowdsource
programming activities have attempted to decompose
complex programming activities into simple microtasks

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that can be carried out by an expert crowd [1]. Separate
systems have verified the ability of crowd workers to pro-
vide feedback on their own task instructions, as well as the
results of other workers [2]. Previous work at LeadGenius
found that crowd workers could be discovered who pos-
sessed programming skills using a directed search algo-
rithm [3]. Commercial tools have successfully disseminat-
ed simple interface QA activities as microtasks on services
like Amazon Mechanical Turk [4]. Last, the practice of
outsourcing software engineering work to contract teams is
reasonably well-understood, but has different dynamics
and challenges than working with online crowds [5].

Figure 1: An example of a crowd-developed system designed,

implemented and deployed by members of the crowd

Figure 2: A custom search engine configured by a crowd worker.

Crowd-Produced Workflow Contributions
After discovering these tools in the wild as part of our reg-
ular community interactions, we examined the background
of the crowd contributors to understand who was produc-
ing them. We interviewed two individuals. One individual
was a Caribbean-based student of computer science who
found crowd work opportunities doing simple data entry a
lucrative side profession relative to local opportunities. He
had multiple open-source contributions and was already
familiar with Git, Javascript, and Angular. His primary
interest was in making his own process of doing data entry
more efficient, but that he did not do so with the explicit
intention of improving the crowd platform overall. Anoth-
er individual was a US-based individual who worked on
Boolean term searches on library systems prior to joining
the LeadGenius crowd. As a manager in the crowd com-
munity, her interest was explicitly in creating tools that
could be used by multiple members of the crowd, sharing
her knowledge, and in earning praise from other workers.
In neither case was a direct incentive provided these tools.

Crowd-directed platform contributions
Javascript interface for deduplication (Figure 1):
In this example, a crowd worker constructed and deployed
(to a private server) a working Javascript application that
accepted a set of data fields input by the end user and gen-
erated a formatted, deduplicated list. The formatting of the
list enabled easy copy-and-pasting into the standard inter-
faces provided by LeadGenius. Qualitative discussions
with workers indicated they found it more efficient than
the standard interface.

Custom search engines for data research (Figure 2): In
this example, a crowd worker used a combination of tools
to produce both a set of customized Google search engines
that extracted subsets of information from the internet, and
a simple exporter that would export the results of these
searches to a spreadsheet. Although the worker was not a
sophisticated programmer, she read up on public resources,
tested a variety of tools, and created a set of custom queries
other workers could use.

Centrally-directed contributions
While it is useful for the crowd to discover its own solu-
tions to problems they face, designers of crowd platforms
may often find the tools produced by workers to work at
cross-purposes with their own roadmap for a product. We
attempted to have crowd workers contribute code to our
core repository as a means of increasing our speed in build-
ing features already planned to be added to the LeadGenius
system. We found that crowd workers fluent in program-
ming were able to successfully run the LeadGenius system,
learn our process for implementing changes and deploying

code for review to in-house engineers, and make recom-
mendations on changes that were being made. These
workers were particularly useful in producing documenta-
tion and providing an additional perspective as a former
user of the system; additionally, the output they produced
had high credibility among other users in the system.

Design Recommendations
Set baseline incentives for emergent behavior: LeadGe-
nius’s core design, paying fair hourly wages, encouraging
communication and incenting efficiency, incented workers
to discover their own means of increasing productivity by
making or combining tools without our explicit direction.

Use multiple workers to provide redundancy: Crowd
workers tended to have highly intermittent availability and
unexpectedly blocked production workflows when their
internet failed. This can be avoided by the use of multiple
workers on the same task.

Invest time in improving accessibility: Engineering sys-
tems in commercial use typically have complex production
flows which need to be adapted to allow contribution from
members of the crowd, accounting for security considera-
tions and the variations in development environments and
machines available to crowd workers. Resolving these
considerations and bringing crowd workers represented a
significant time investment before workers could contrib-
ute even minimally to a commercial codebase. It was criti-
cal to pair crowd members with a highly-available source
of technical support inside an organization.

References

1. LaToza, Thomas D., W. Ben Towne, Christian M. Adriano,
and André van der Hoek. "Microtask programming: Building
software with a crowd." In Proceedings of the 27th annual ACM
symposium on User interface software and technology, pp. 43-54.
ACM, 2014.
2. Dow, Steven, Anand Kulkarni, Scott Klemmer, and Björn
Hartmann. "Shepherding the crowd yields better work."
In Proceedings of the ACM 2012 conference on Computer Sup-
ported Cooperative Work, pp. 1013-1022. ACM, 2012.
3. Kulkarni, Anand, Prayag Narula, David Rolnitzky, and Nathan
Kontny. "Wish: Amplifying Creative Ability with Expert
Crowds." In Second AAAI Conference on Human Computation
and Crowdsourcing. 2014.
4. www.rainforestqa.com
5. Bean, Michael. "The Pitfalls of Outsourcing Programmers."
In The Best Software Writing I, pp. 9-15. Apress, 2005.
6. Kulkarni, A., Gutheim, P., Narula, P., Rolnitzky, D., Parikh, T.,
& Hartmann, B. (2012). Mobileworks: Designing for quality in a
managed crowdsourcing architecture. Internet Computing,
IEEE, 16(5), 28-35.

