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Abstract

Adaptive voting is a commonly used scheme for aggregating
consensus in crowdsourced binary labeling tasks. Workers as-
sign labels to an item until the votes for one class outnum-
ber the votes for the other class by a given integer threshold.
Modeling the process as a Markov random walk, we offer re-
sults on how workers with different accuracy levels should
be paid comparatively to each other under an adaptive vot-
ing scheme. We calculate the expected accuracy of the final
consensus vote and estimate the number of votes necessary
for the process to finish. We show how to derive a fair pay-
ment policy for two groups of workers with different accu-
racy rates in a way that guarantees that the task is associated
with the same cost and generates results of the same quality
when assigned to either group. This paper also compares the
adaptive voting scheme with majority voting, demonstrating
evidence for a strict dominance of the former. Our model is
simple yet flexible and provides the foundation for analysis
of more complex settings.

1 Introduction
Binary labeling tasks are widely used in crowdsourcing. A
commonly used scheme is adaptive voting, where workers
assign labels to an item until the votes for one class out-
number the votes for the other class by a threshold δ. We
call a voting scheme adaptive to indicate that the number of
workers is not determined in advance, but depends on the
distribution of votes as they arrive sequentially.1

We present a model that examines how workers of differ-
ent accuracy levels should be paid, comparatively to each
other, under such a voting scheme. There is no lack of
empirical results for such questions (Chilton et al. 2013;
Dai et al. 2013; Mortensen, Musen, and Noy 2013). How-
ever, the simple, stylized theoretical model proposed herein
can guide design decisions. In our analysis, the voting pro-
cess is modeled as a Markov random walk, and we show:

1This is in contrast to non-adaptive schemes, e.g. “majority out
of 5” where we always select five votes and the majority label
ends up being the consensus. The broader family of adaptive vot-
ing schemes contains more sophisticated workflows, where at each
iteration (i.e. with each added vote) some of the workflow parame-
ters are updated (e.g., (Khetan and Oh 2016)).

• How to calculate the expected accuracy of the final answer
in a model with an adaptive voting scheme.

• How to estimate the number of votes necessary for the
process to finish.

• How to derive a fair payment for two groups of workers
with different accuracy rates in a way that guarantees that
the task is associated with the same cost and generates
results of the same quality when assigned to either group.

Our model is simple yet flexible and provides the foundation
for analysis of more complex settings.

2 The Model
Consider the problem of assigning binary labels to items on
a crowdsourcing platform. For every item, we solicit votes
from workers who assign the correct label with probability
p and the incorrect label with probability 1 − p. We keep
asking workers to assign labels to an item until the abso-
lute difference between the numbers of correct and incorrect
votes exceeds a pre-defined consensus threshold δ.

Example. We set δ = 2, so the process will stop when the
tuples 〈n1, n0〉 composed of the counts of correct and incor-
rect votes reach one of the following stages: 〈2, 0〉, 〈0, 2〉,
〈3, 1〉, 〈1, 3〉, 〈4, 2〉, 〈2, 4〉, and so on. A consensus vote ob-
tained in one of the states {〈2, 0〉, 〈3, 1〉, 〈4, 2〉, ...} is cor-
rect, while a consensus vote obtained in one of the states
{〈0, 2〉, 〈1, 3〉, 〈2, 4〉, ...} is incorrect.

Since the only desideratum for consensus is the difference
between the counts of two types of votes, the process can be
modeled as a Markov random walk. Define the current state
as the difference between the numbers of correct and incor-
rect votes. If the difference is δ or−δ, the process terminates
with a correct or an incorrect consensus label, respectively.
In all other states, we procure an additional vote, which will
be correct with probability p, moving the process from state
i to state i + 1. This process has a state diagram illustrated
in Figure 1 and is known as Gambler’s Ruin model2. Be-

2The Gambler’s Ruin model is a common introductory exam-
ple for random walks. The models is describing the probability of
a gambler’s winning a certain amount in the casino, vs. the proba-
bility of losing everything. See (Feller 1968, page 344) for details.
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Figure 1: A graph of state transitions in the process of voting
for a single item. Node labels mark the difference between
the numbers of correct and incorrect votes, n1 − n0 in a
corresponding state. A correct or an incorrect consensus vote
is reached in absorbing states δ and −δ, respectively.

low we provide several analytical results pertaining to this
model. We omit proofs for space considerations.

2.1 Quality of Consensus Vote
The first quantity of interest is the quality of the final
consensus votes. The process always starts at state 0 (no
votes). Let us denote as C a random variable indicator of
whether the consensus vote (in the event that it was reached)
corresponds to the ground truth correct label of an item.
We want to calculate the probability of reaching terminal
state δ (voters agree, ground truth correct label is assigned,
i.e. C = 1) vs. reaching terminal state −δ (voters agree,
ground truth incorrect label is assigned, i.e. C = 0). In all
other states, the voting continues. Independently proving
the results in (Feller 1968, page 344), we have the following:

Theorem 1. The probability Q(φ, δ) that the consensus
vote c is correct, for an item classified using an adaptive vot-
ing scheme with worker accuracy p and a consensus thresh-
old δ, is:

Q(φ, δ) = P (C = 1|φ, δ) = φδ

1 + φδ
, (1)

where φ = p
1−p are the odds of a single worker classifying

the item correctly.

For an example of the theorem’s application, consider a
pool of workers with accuracy p = 0.75 (i.e., φ = 3). If we
set δ = 2, the expected quality of the overall classification
will be Q(3, 2) = 0.9.

2.2 Quality Equivalence by Varying Threshold
Parameter δ

The result from Section 2.1 can be used to answer the fol-
lowing question. Suppose that we have two sets of workers:
one with accuracy p1 and another with accuracy p2. The
first set of workers operate an adaptive voting scheme with
threshold parameter δ1. How must one choose the value
of δ2, so that the set of workers with accuracy p2 would
generate the same quality of the results as the workers in the
first scheme? By setting Q(φ1, δ1) = Q(φ2, δ2) and solving
for δ2, we get the following result:

Corollary 1. If an item is classified by workers with ac-
curacy p1 and threshold δ1, we can achieve the same quality
of results by a set of workers with accuracy p2 if we set the
threshold δ2 to be:

δ2 = δ1 ·
lnφ1
lnφ2

, (2)

where φ1 = p1
1−p1 and φ2 = p2

1−p2 are the odds of a single
worker classifying the item correctly.

2.3 Expected Number of Votes
The next question is whether the process is guaranteed
to terminate, and how many votes we expect to collect
until reaching a consensus. We can estimate the number
of votes it takes to reach state δ or state −δ in terms of
transitions in the Markov chain as follows. The number of
remaining steps E0 from state 0 is one step it takes to reach
the next state (i.e., state 1 with probability p or state -1 with
probability 1 − p) plus the number of remaining steps from
this resulting node. By solving, we get:

Theorem 2. The expected number of votesNvotes it takes
to reach a (correct or incorrect) consensus when classifying
an item using an adaptive voting scheme with worker accu-
racy p and consensus threshold δ is:

E(Nvotes|φ, δ) = δ · φ+ 1

φ− 1
· φ

δ − 1

φδ + 1
, (3)

where φ = p
1−p are the odds of a single worker classifying

the item correctly.

2.4 Worker Pay Equivalence
Assume that workers with accuracy φ are paid pay(φ) per
vote. In this case, the expected cost of classifying an item is:

Cost(φ, δ) = pay(φ) · E(votes|φ, δ) (4)

We would like to pay teams of workers with different
accuracies in a way that is fair: as long as the teams can
generate results of equal quality, they should be paid the
same total amount. From Section 2.2, we can increase
δ to compensate for a lower worker accuracy. However,
as shown in Section 2.3, higher consensus thresholds
also increase the expected number of votes required to
reach consensus. We set Cost(φ1, δ1) = Cost(φ2, δ2) and
δ2 = δ1 · lnφ1

lnφ2
to ensure equal quality. We thus get:

Theorem If workers with accuracy φ1 are paid pay(φ1)
per vote, then workers with accuracy φ2 will generate results
of the same quality and cost if the ratio of the payments is:

pay(φ1)
pay(φ2)

=
lnφ1
lnφ2

· φ2 + 1

φ1 + 1
· φ1 − 1

φ2 − 1
. (5)

3 Comparison with Majority Voting
In order to gain insight into the performance of the adaptive
voting scheme, we compare it with majority voting. We ran
simulation studies, examining the expected quality of major-
ity vote, as well as the estimated number of required workers
for a majority voting scheme supplemented by an early stop-
ping mechanism that is used when vote dominance becomes
‘irreversible’. The examination of the ratio of expected cost
(numbers of workers required for a consensus) between an
adaptive voting scheme and a simple majority voting scheme
suggest strict dominance of the adaptive voting scheme com-
pared with majority voting.
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