Adaptive Query Processing with the Crowd: Joins and the Joinable Filter

Han Maw Aung, Cienn Givens, Amber Kampen, Rebecca Qin, Beth Trushkowsky
Harvey Mudd College
Computer Science Department
beth@cs.hmc.edu

Introduction

Integrating crowdsourcing into database systems enables us
to process database queries that rely on information not con-
tained in the database at the time the query is issued. To
process crowd-powered queries, we ask workers to perform
tasks such as labeling, ranking, and verifying; we then use
their responses to evaluate the query.

Our current work deals with filter queries, which return
items that satisfy a set of given constraints, or filters. A
crowd-powered filter query has the crowd check if items
satisfy the constraints. We build off of work done in Dy-
namic Filter, a crowd-powered query processing algorithm
that adaptively orders filters on a list of items to reduce total
work, measured in time taken by the crowd (Lan et al. 2017).

We pursue further efficiency in crowd-powered filter
queries by investigating cases where joins may be used to
replace filters. A join is a database operation which takes in
two sets of items, pairs items from different sets, then filters
the pairs based on which pairs fulfill a criterion called the
Jjoin condition. The output is the set of remaining pairs.

In our work, joins are relevant when considering filters
with a particular form which we call joinable filters. As an
example of this form, consider filtering a set of hotels based
on whether they are within two miles of a café with outdoor
seating. The primary items (those being filtered) are hotels.
Whether or not they are within two miles of a café is the join
condition, because it joins the primary list with another set
of items (the secondary items). A café with outdoor seating
passes the constraint on the secondary items, called the sec-
ondary filter. A primary item passes a joinable filter if, by
the join condition, it matches a secondary item that passes
the secondary filter.

We can replace a joinable filter, a single yes/no task for
a given primary item, with an equivalent sequence of oper-
ations that make up a join and secondary filter, which we
call a join path. In breaking down the joinable filter, we can
increase the efficiency of the query by reducing redundant
work. For example, if multiple primary items match a sec-
ondary item that passes the secondary filter, the joinable fil-
ter would have workers find and evaluate the same secondary

Presented in the Work in Progress and Demo track, HCOMP 2019.
Copyright by the author(s)

item multiple times through different primary items. Our ap-
proach would only evaluate the secondary filter once and
save that information to leverage for the remainder of the
query. Our initial findings show that join paths can complete
certain queries faster than joinable filters.

Related Work

Our work addresses crowd-powered joins, where the join
condition is evaluated by the crowd. Part of our approach to
efficient crowd-powered joins involves the idea of a pre-join
filter (Marcus et al. 2011). A pre-join filter asks the crowd
to categorize each item from the two input lists before the
join condition is tested on pairs; two items in the same cate-
gory have a much higher likelihood of matching by the join
condition (in our cases, to the extent that two items from dif-
ferent categories cannot match) (Mitsuishi et al. 2013). For
example: if the lists were hotels and cafés, each could be
categorized with the city they are located in.

There is existing work on crowd-powered joins e.g. (Li et
al. 2017) (Mitsuishi et al. 2013), but to the best of our knowl-
edge, ours is the first work that optimizes crowd-powered
joins specifically for the purpose of improving filter queries.
The inclusion of the secondary filter as well as the ability to
finish the query before the join is complete (when the join-
able filter is done) distinguish our work.

Join Paths

Join paths are sequences of operations that can replace join-
able filters. Our work explores two classes of join paths.

Item-wise Joins The item-wise join has two variants: one
on primary items and one on secondary items. Item-wise
joins on primary items ask the crowd to produce every item
in the secondary set that matches a primary item by the join
condition and then to evaluate the secondary filter for the
items found. Since secondary filters are evaluated only once
for each secondary item, item-wise joins can avoid doing re-
dundant work that would be done by the joinable filter.
Item-wise joins on secondary items differ in that the
crowd is asked to pair primary items with a given secondary
item. By performing the join this way, the item-wise join can
evaluate secondary filters at the beginning of the query path



to avoid finding matches for secondary items that do not pass
the secondary filter. This join path is possible when we start
the query with the secondary list.

However, normally we do not have the secondary list at
the start of the query. We can use the crowd to compile the
secondary list by finding matches with primary items; we
use statistical techniques to predict when we have found all
secondary items (Trushkowsky et al. 2013). Compiling the
secondary list also opens up other join paths which use op-
erations that require it.

Pre-join Filter Join One such path is the pre-join filter
join, which labels items before the join. Items with different
labels cannot satisfy the join condition, which significantly
reduces the number of pairs that need to be evaluated. This
path first asks workers to label primary and secondary items
in order to categorize them. Workers are then given pairs
of items with the same label and asked to evaluate whether
they match by the join condition. Finally, they are asked to
evaluate the secondary filter until the join path is done.

Initial Findings
We attempt to find if and when join paths are faster than the
joinable filter. To collect results, we run simulations of join
paths and compare total worker time to the time it takes to
evaluate the joinable filter.

Experimental Setup

In our experiments, we run each join path using simulated
worker responses. We control parameter settings, includ-
ing secondary filter selectivity and join condition selectivity.
These selectivities refer to the proportion of secondary items
that pass the secondary filter and pairs that pass the join con-
dition, respectively. With these settings, our simulation pro-
gram generates ground truth for every operation. Simulated
crowd workers are assigned tasks based on the join path be-
ing simulated and give responses based on the ground truth,
occasionally giving false answers, as we expect real crowd
workers would. We use the same consensus approach as in
(Trushkowsky et al. 2013).

In a single simulation, we record the number of tasks is-
sued for each operation, which we use along with the time
for each operation to calculate a join path’s cost, the total
amount of worker time spent evaluating the path. Cost can be
hard to characterize for an arbitrary query because the time
it takes to complete each operation depends on the query be-
ing evaluated. For our initial results, presented in the next
section, we use one set of operation costs and note that join
paths for other queries might perform differently based on
the operation costs relevant to that query. For the following
results, we estimate that finding a single match for an item
and a secondary filter operation both cost one unit of time.

For comparison to the join path, we provide cost estimates
for the joinable filter. The upper bound estimate assumes
that workers first find a secondary item for a given primary
item, decide if the secondary item passes the secondary fil-
ter, and repeat until the primary item is evaluated. The lower
bound assumes that finding pairs and evaluating secondary
filters can be done simultaneously, so it takes half the time of

Worker Time (time units)

4000 4

3000 4

2000 -

1000 -

—— IWS w/ join condition selectivity = 0.1
=== JF upper bound estimate

JF lower bound estimate

ok

~—

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Secondary Predicate Selectivity

Figure 1: Item-wise on Secondary Items (IWS) vs Joinable
Filter (JF). Lower selectivity values are more selective.

the upper bound estimate. These bounds account for worker
heuristics that could reduce total work by applying opera-
tions over many items at the same time.

Results

Figure 1 shows results from running simulations of an item-
wise join path on secondary items (including first enumer-
ating the secondary list) as compared to upper and lower
estimates of the joinable filter. The join condition selectiv-
ity is fixed at 0.1 and the secondary filter selectivity varies.
The box plots are distributions over 50 simulations, each run
with 100 primary and 50 secondary items. We can see that
when the secondary filter is more selective, the item-wise
join on secondary items path is faster than the joinable filter.
This effect is expected because fewer secondary items pass-
ing the secondary filter means that there are fewer secondary
items for which workers must find matches. Therefore, it is
possible for a join path to perform significantly better than
the joinable filter under favorable circumstances. This graph
serves as an example where one of our join paths outper-
forms joinable filters; future work includes exploring other
conditions which may favor join paths.

Conclusions and Future Work

Our initial findings suggest that there are potential cost sav-
ings in crowdsourced query processing by replacing joinable
filters with joins.

Future work includes using information we have gath-
ered about different join paths and when they perform best
to construct an adaptive algorithm that will choose the op-
timal path for a given query based on its selectivities and
other characteristics. To do so effectively, we must continue
to characterize the space of join paths by running more sim-
ulations with varied parameters. Additionally, next steps in-
clude integrating the adaptive join algorithm into Dynamic
Filter and testing join paths with real crowd workers.

Acknowledgements
This work was supported by NSF Grant No. 1657259.



References

Lan, D.; Reed, K.; Shin, A.; and Trushkowsky, B. 2017.
Dynamic filter: Adaptive query processing with the crowd.
In HCOMP.

Li, G.; Chai, C.; Fan, J.; Weng, X.; Li, J.; Zheng, Y.; Li, Y.;
Yu, X.; Zhang, X.; and Yuan, H. 2017. Cdb: Optimizing
queries with crowd-based selections and joins. In Proceed-
ings of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD °17, 1463-1478. New York, NY,
USA: ACM.

Marcus, A.; Wu, E.; Karger, D.; Madden, S.; and Miller, R.
2011. Human-powered sorts and joins. Proc. VLDB Endow.
5(1):13-24.

Mitsuishi, T.; Morishima, A.; Shinagawa, N.; and Aoki, H.
2013. Efficient evaluation of human-powered joins with
crowdsourced join pre-filters. In ICUIMC, 7:1-7:6. New
York, NY, USA: ACM.

Trushkowsky, B.; Kraska, T.; Franklin, M. J.; and Sarkar,
P. 2013. Crowdsourced enumeration queries. In 2013

IEEE 29th International Conference on Data Engineering
(ICDE), 673—-684.



