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Abstract

The existence of an anomaly detection method that works op-
timally for all domains is a myth. Thus, there exists a con-
tinuously increasing number of anomaly detection methods
for a wide variety of domains. But a strength can also be a
weakness; given this massive library of methods, how can
one select the best method for their application? An exten-
sive evaluation of every anomaly detection method is simply
not feasible. In this work-in-progress, we present an efficient
human-in-the-loop technique to intelligently choose the opti-
mal anomaly detection methods based on the characteristics
the time series displays such as seasonality, trend, concept
drift, and missing time steps. Once the optimal anomaly de-
tection methods are selected via these characteristics, humans
can optionally annotate the predicted outliers which are then
used to tune and improve the selected methods for their data.
Applying our methodologies can save users time and effort by
surfacing the most promising anomaly detection methods in-
stead of experimenting extensively with an expanding library
of anomaly detection methods, especially in an online setting.

Introduction
An anomaly in a time series is a pattern that does not con-
form to past patterns of behavior in the series. Time se-
ries anomaly detection is a difficult problem for a multi-
tude of reasons: (1) What is anomalous may differ based
on application. There is no one-size-fits-all method (Val-
lis, Hochenbaum, and Kejariwal 2014; Laptev, Amizadeh,
and Flint 2015). (2) Anomaly detection often must be done
online in real-world streaming applications. (3) Given the
application-specific nature of anomaly detection, it is un-
likely that anomaly detection systems will have access to
large numbers of tagged datasets. (4) Non-anomalous data
occurs in significantly larger quantities than anomalous data.
(5) It is important to detect as many anomalies as accurately
and efficiently as possible, but minimizing false positives is
also desirable to avoid alarm fatigue. This demands the se-
lected anomaly detection method be optimal to the applica-
tion for success. (6) There is a massive wealth of anomaly
detection methods to choose from. Because of these diffi-
culties inherent in time series anomaly detection, we present
an efficient, human-in-the-loop technique for the classifica-
tion of time series and choice of anomaly detection method

based on the characteristics the time series possesses.

Approach
In Algorithm 1, we propose an approach based on the char-
acteristics a given time series (ts) possesses. This is essen-
tial as some anomaly detection methods perform better on
certain characteristics than others. For example, if the time
series data in a user’s application exhibits concept drift, the
user may want to consider a forecasting RNN and not Twit-
ter AnomalyDetection (Freeman et al. 2019).

First, missing time steps may make it difficult to apply
anomaly detection methods without some form of interpola-
tion. However, other methods can handle missing time steps
innately. The system determines the minimal time step dif-
ference in the input time series to find missing time steps.
The user can then decide if the missing time steps should
be filled (fill) using some form of interpolation (e.g. lin-
ear, etc., called filloption) or if the system should limit the
selection of anomaly detection methods to those that can in-
nately deal with missing time steps. Next, the system deter-
mines if concept drift is present in the time series where
the definition of normal behavior changes over time (Saurav
et al. 2018). Concept drifts can be difficult to detect espe-
cially if one does not know beforehand how many concept
drifts there are. In (Adams and MacKay 2007), this num-
ber does not need to be known. An implementation of this
paper is available in (Kulick 2016) using t-distributions for
each new concept, referred to as a run. The posterior prob-
ability (P (rt|x1:t)) of the current run rt’s length at each
time step (xi for i = 1...t) can be used to determine the
presence of concept drifts. In our system, the user selects
a threshold for the posterior probability for what is consid-
ered a run (threshpost) and also how long a run must be be-
fore it is actually a concept drift (lenrun). The system then
determines if a time series contains seasonality, the pres-
ence of variations that occur at specific regular intervals.
The system makes use of the FindFrequency function
in the R forecast library (Hyndman, Khandakar, and others
2007) which first removes linear trend from the time series
if present and determines the spectral density function from
the best fitting autoregressive model. By determining the in-
put f that produces the maximum output spectral density



value, FindFrequency returns 1
f as the periodicity. If no

seasonality is present, 1 is returned. Finally, the system de-
termines if trend is present in the time series. Our system
detects two types of trend: stochastic (removed via differ-
encing the time series) and deterministic (removed via de-
trending or removing the line of best fit from the time series).
Stochastic trend is identified using the Augmented Dickey-
Fuller (ADF) test (Cheung and Lai 1995), and deterministic
trends are detected using the Cox-Stuart test (Linden 2000).

In our previous experiments (Freeman et al. 2019), for
seasonality and trend, decomposition-based anomaly detec-
tion methods such as analyzing the residuals of STL (sea-
sonal decomposition of time series by Loess) (Cleveland
et al. 1990), SARIMA (seasonal auto-regressive integrated
moving average), and Prophet (Sean J. Taylor 2017) perform
the best. For concept drift, more complex methods are nec-
essary such as RNNs (Saurav et al. 2018), Hierarchical Tem-
poral Memory Networks (Hawkins, Ahmad, and Dubinsky
2010), and Prophet. For missing time steps, the number of
directly applicable anomaly detection methods is drastically
reduced. Although one can interpolate, this does introduce
a degree of error. If no interpolation is desired, SARIMA,
STL, and Generalized Linear Models are options.

Narrowing the choices down to a smaller class of promis-
ing anomaly detection methods (optimalMethods) saves
time as there is an ever expanding library of anomaly detec-
tion methods. The definition of what is an anomaly is highly
subjective, so human input is essential in the decision-
making process. Although we automate as much of the pro-
cess as we can (determining the presence of characteris-
tics, narrowing down the search space of anomaly detection
methods), it is not advisable to completely remove the hu-
man element. For every selected anomaly detection method,
its predicted anomalies (outliers) are given to the user
to annotate (Is the predicted anomaly truly an anomaly?),
and based on their decision, the parameters for that method
can be tuned to reduce the error. Parameter tuning is de-
pendent on the anomaly detection method. For example, if
a method produces an anomaly score ∈ [0, 100] with an
anomaly threshold of 75, the system will raise the thresh-
old to reduce false positives. Using this feedback, the system
learns to minimize false positives for the user’s data.

What about AutoML? There are tasks that are less prone
to automation if no labeled data are initially available (ex-
actly our situation). In addition, extreme class imbalance
(common in anomaly detection) was the main difficulty for
the 2018 AutoML Challenge Series (Hutter, Kotthoff, and
Vanschoren 2019), and there was a 15 to 35% performance
gap between competitors that solely used AutoML vs those
that included human intervention. Yahoo’s EGADS (Laptev,
Amizadeh, and Flint 2015) is the existing human-in-the-loop
system with a similar purpose to ours. However, there are
some key differences. EGADS gives users two options: the
user can choose (1) how to model the normal behavior of the
time series such that a significant deviation from this model
is considered an outlier or (2) which decomposition-based
method to use with thresholding on the noise component.
EGADS then gives users the predicted anomalies to annotate
and trains a binary classifier to predict if an anomaly is rele-

Algorithm 1: Select Optimal Detection Method
input : ts
output : optimal detection method and parameters
parameter : threshpost, lenrun, fill, filloption
seasonality, trend, miss, conceptDrift← false;
selectedMethod← none;

if HasMiss(ts, fill, filloption) then
if fill then ts← FillTS(ts,filloption) ;
else miss← true;

if HasConceptDrift(ts, threshpost, lenrun) then
conceptDrift← true;

if FindFrequency(ts) > 1 then
seasonality← true;

if CoxStuart(ts) < .05 or
AugmentedDickeyFuller(ts) >= .05 then

trend← true;
optimalMethods←FindOptimal(seasonality, trend,
conceptDrift, miss);

while selectedMethod is none do
for (method, methodParams) in optimalMethods

do
outliers←FindOutliers(ts, method,
methodParams);

if User accepts outliers then
selectedMethod← method;
break;

else
tags← User annotates outliers;
methodParams← TuneParams(method,
tags);

return selectedMethod, methodParams

vant to the user. The classifier is given the time series and its
characteristics such as periodicity and kurtosis as features.
However, we focus on the characteristics present in the time
series to first discard suboptimal anomaly detection meth-
ods. By filtering suboptimal methods, we save users time as
they do not need to select from an ever expanding library of
anomaly detection methods; they can directly begin work-
ing with more promising methods. Our method also avoids
potential error introduced by the filtering classifier.

Conclusion

In summary, anomaly detection is a hard problem for many
reasons, with one of them being method selection in an
ever expanding library, especially for non-experts. Our sys-
tem tackles this problem by determining the characteristics
present in the given data and narrowing the choice down to a
smaller class of promising anomaly detection methods. We
then incorporate user feedback on predicted outliers from
the methods in this smaller class to optimize these methods
to the user’s data. We demonstrate our procedure in this pa-
per and are working towards a rigorous evaluation on a large
variety of time series and methods.
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