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Introduction
One common use of crowdsourced data is to evaluate AI
systems that interpret unstructured input (e.g. image, audio,
video, text, etc.). In AI, this is by and large the only method
of evaluating AI systems – by comparison to humans per-
forming ”the same” task. However, most published papers
fail to report if the performance differences they find are
significant, are within the capability of the evaluation set to
measure. How often are published improvements just an ac-
cident of the evaluation data set?

In this paper we introduce the idea of using metrology,
the science of measurement and its application, as a basis
for understanding human (crowd) powered evaluations. We
begin with the intuitive observation that evaluating the per-
formance of an AI system is a form of measurement, and in
general when we measure something we use an instrument.
In the hard sciences, when instruments are used their metro-
logical properties are reported.

Our goal is to provide a valid and rigorous method for
characterizing crowd-powered instruments used for evalua-
tion, so that the errors in the instrument can be included in
the significance tests, and we can draw a more valid conclu-
sion about the result. Through establishing this method, we
expect to learn how to build better instruments and justify
allocating resources to improving them.

Benchmarks for ML Performance Assessment
According to (Baker 2016) we experience a “reproducibil-
ity crisis” across various scientific fields, e.g. deep learn-
ing(Crane 2018), information retrieval (Arguello et al. 2016;
Li et al. 2006). In 2017 ACL also acknowledged the need
for replicable and reproducible results (Joakim Nivre, 2017).
However, none of these efforts focuses on the role of bench-
mark datasets and their quality as instruments for measuring
system performance, and thus also impacting the reliability
of results.

A growing number of researchers have recently pointed
out numerous problems and inconsistencies in the way the
data in such benchmarks is collected (Son 2018; Inel 2017;
2019), and especially in what can be concluded from these
evaluations. (Rogers, Drozd, and Li 2017; Gladkova, Drozd,
and Matsuoka 2016; Wendlandt, Kummerfeld, and Mihal-

cea 2018) raise awareness on how properties of the data in
benchmark datasets used for evaluation of word embeddings
systems play a role in the stability of the results. In this paper
we argue that paying attention to the instrument character-
istics of a benchmark affects how we make interpretations
about the systems being measured, a key question of interest
to AI/ML researchers using these benchmarks.

Metrology of Crowd-Powered Instruments
Metrology can help to understand the reliability of measure-
ments well enough for comparison, which is what AI science
needs from human computation. We borrow the framework
from metrology [BIPM/GUM]1 and modify it to suit crowd-
powered instruments. We illustrate this by characterizing the
Wordsim-353 (WS-353)2 benchmark for measuring AI sys-
tems’ ability to compute lexical similarity of words:

Measurement Procedure
The crowd was tasked to rate 353 word pairs on their similar-
ity, with two special cases to test and calibrate the workers:
a repeated pair (money, cash), and a repeated word (tiger,
tiger). 13 Workers rated all 353 items, 16 workers rated only
200. WS-353 is typically used as an evaluation instrument
by comparing a system’s predicted similarity scores to the
mean worker scores on each pair using Spearman’s rho (rank
correlation).

Precision
Precision is the variance of the instrument when measuring
the same, unchanging, object. High variance indicates lower
precision. The precision of the WS-353 instrument is a vec-
tor of per-item standard deviation (σ) scores. The WS-353
word pair σs are normally distributed, with mean σ = 1.7,
and σ(σ) = .54. The highest variance is in the pair (prece-
dent - example), and the lowest aside from (tiger - tiger), is
(king - cabbage), which also has the lowest similarity score.
In general, the standard deviations have a crescent shaped

1https://www.itl.nist.gov/div898/handbook/glossary.htm
2https://aclweb.org/aclwiki/WordSimilarity-353 Test
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Figure 1: The metrological precision of WordSim-353 can
be vizualized by comparing the standard deviation of each
pair’s votes to the mean.

Sys WS353 WS353r WS353r2
ESA 0.739 0.643 0.563
TSA 0.784 0.706 0.635

CLEAR 0.810 0.715 0.642
CLEAR+TSA 0.841 0.748 0.670

Table 1: Spearman’s rank correlation of each system’s pre-
dictions to the mean worker scores of the original and
two subsequent reproductions of the WS-353 measure-
ments. While the relative order of the system scores remain
the same within each reproduced measurement, the scores
change by far more than the differences between systems.

relationship with the mean (Figure 1). This indicates the in-
strument has low precision.

The analysis shows that 95% of the pairs are statistically
equivalent to 10% of their nearest neighbors, making the
rank nearly meaningless. An improvement in rank correla-
tion displayed by one system over another may be statisti-
cally accidental.

Reproducibility and Repeatability
Repeatability is the degree to which measurements under the
same conditions agree with each other. Reproducibility is
on a different level, for measurements made under different
environmental conditions. We utilize Krippendorff’s alpha
as a summary statistic for repeatability. For the original WS-
353 instrument, α = 0.59. For reproducability we re-ran
the WS-353 set of word pairs with Amazon MTurk using
the original guidelines, word pairs, and 13 judgements per
pair. Unlike the original, we collected work from 50 different
workers to yield the same total number of judgements. These
instruments had α = 0.59 and α = 0.52.

We then compared the results of four word-similarity sys-
tems (Halawi et al. 2012) using the original and reproduced
instruments. These results are shown in Table 1.

The scores of each system vary dramatically across the
three instruments, however the relative ranking of systems
remains constant. It is not clear if this is significant, more
analysis is required.

0.0 0.9 1.8 2.7 3.6
CLEAR 0.742 0.782 0.816 0.845 0.867

CLEAR+TSA 0.651 0.675 0.697 0.723 0.744
TSA 0.576 0.599 0.621 0.646 0.668
ESA 0.506 0.530 0.553 0.577 0.598

Count 61425 46375 33359 23280 15693

Table 2: Pearson correlation between (1) the normalized dis-
tances between all ws353 pairs and (2) the normalized dis-
tances between all the predicted pairs at different values of
instrument resolution.

Sensitivity and Resolution
Sensitivity in metrology refers to the rate at which changes
in the measured object are reflected by the instrument, it is a
ratio of those two changes. Resolution is the smallest change
the instrument can detect. It is very difficult to tease these
two notions apart when characterizing a crowd-powered in-
strument. Further study is needed, for the time being we
adopt resolution as the characteristic we will specify for the
WS-353 instrument.

Table 2 shows the Pearson correlation between: the l2-
normalized distances between all ws353 pairs and the l2-
normalized distances between all the experiment pairs. Each
column of the table represents the correlations at a particu-
lar instrument resolution, such that the correlated distances
only include those on pairs for which the ws353 distance is
above the resolution. The counts show how many pairs are
included at that level of resolution.

We were expecting the results to show that, as the resolu-
tion threshold increases, the four systems become decreas-
ingly different. The results do not show this, however they do
lend more evidence to support the hypothesis that measur-
ing the differences between these four systems is beyond the
WordSim-353 instrument’s capabilities. In particular, the re-
sults show that CLEAR, and not CLEAR+TSA, has a higher
correlation with the WS-353 pairwise distances.

This experiment has high statistical power because of the
number of pairs (bottom row in Table 2), and these differ-
ences are significant for that reason.

Discussion
The main contribution of this paper is in introducing ele-
ments of metrology to characterize the quality and reliabil-
ity of crowd-powered instruments. From the results of these
experiments we do see promising signals that metrology can
help us understand the evaluations, and in particular can help
us determine when system performance evaluations show
significant improvements. There are still many open ques-
tions around how to better characterize crowd-powered in-
struments, and there is still a large body of future work to do
with respect to the characterization of a wide variety of AI
benchmarks.
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