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1 Introduction
Machine learning brings profound influences on a wide
range of applications from self-driving cars (Sun et al. 2020)
and e-commerce (Shankar et al. 2017) to automatic medi-
cal diagnosis (Kelly et al. 2019) and wild animal monitor-
ing (Norouzzadeh et al. 2018). As a striking example, Al-
phaFold2 (Senior et al. 2020) performs better than computa-
tional biologists in predicting protein structures. Much of the
recent success comes from larger and better datasets, such
as ImageNet (Deng et al. 2009) and CheXNet (Rajpurkar et
al. 2017), and human plays an important role by providing
high-quality labels.

A good and high-quality dataset includes many rounds of
data labeling, data cleaning, and data analysis. The full pro-
cess is labor-intensive and time-consuming. What make it
even more challenging are the human factors: uncertainty
and diversity. Human annotations are uncertain especially
in ambiguous or complex tasks. The higher the uncertainties
are, the more human feedbacks we need to supervise our ma-
chine learning models. On the other hand, human is diverse
in many different perspectives which can be capsulated into
skills. The skills are dependent on task familiarity and task-
required expertise. Low-skilled workers tend to provide in-
correct and uncertain feedbacks, leading to lower efficiency
in supervising machine learning models.

Besides data labeling, data cleaning and data analysis
also matter and there are few works focus on worker-centric
dataset analysis.Worker-centric dataset analysis is more than
detecting adversarial workers. It helps incentivize workers
to contribute more to the dataset generation or correct unde-
sirable behaviors. Take citizen scientists for example, e.g.,
iNaturist (), one of the major incentizes is that they want to
push the science forward and contribute to the communities.
With worker centric dataset analysis, we can provide real-
time feedbacks to citizen scientists, which in return, moti-
vates them to provide even more annotations.

This research abstract tries to approach the question: What
is the next dataset creation pipeline? and divides the prob-
lem into three different but connected pieces as shown in
Fig. 1: R1) How to aggregate the noisy human feedbacks?
R2) How to efficiently allocate tasks to workers with little
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Figure 1: Three Research Questions. This research abstract
aims to approach the question What is the next dataset cre-
ation pipeline? from three differnet perspectives. R1 investi-
ages the ways to aggregate noisy workers’ annotations so as
to maximize the label quality. R2 focuses on how to perform
budget(time and money)-aware task allocation such that the
label quality is maximized. Lastly, R3 analyzes the workers’
annotations w.r.t. ML model preformances.

to no prior knowledge of workers? R3) To incentivize work-
ers, how to measure the influence of each worker towards
the performance of machine learning models?

2 Background
With the surge of crowdsourcing platform (Buhrmester,
Kwang, and Gosling 2011), there are plenty of works focus
on label aggregation. Some focus on constructing a graph-
ical model over the generation of annotations (Dawid and
Skene 1979; Li, Rubinstein, and Cohn 2019). Other works
leverage deep nerual nets to directly perform label aggrega-
tion (Rodrigues and Pereira 2017). In R1, we take the best
of both worlds to incorporate the uncertainties measurement
in graphical model and expressibility in deep neural nets.

Data labeling and data cleaning are online processes. By
actively selecting which annotation (datum and worker) to
sample, we can achieve better efficiency under the same
budget. This is done in several works using bandit (Tran-
Thanh et al. 2014; Rangi and Franceschetti 2018). The most



related topic is Active learning (Sener and Savarese 2018),
which only performs sampling over datum since it assume
the workers are experts. In R2, we want to bridge the gap
between these two domains.

Data analysis is as important as data labeling and of-
ten done from the data perspective (Koh and Liang 2017;
Achille et al. 2020). In R3, we want to evaluate the worker
contributions w.r.t. model performances.

3 Efficient Dataset Generation Pipeline
We first introduce the notations and formulate the problem
of efficient dataset generation. Let X be the raw data, Z be
the annotations (human feedbacks), and O is the occupancy
(assignment) of datum and worker. The goal is to find the
best assingmnet scheme O such that the dataset values are
maximized:

max
O

EZ∼OV(X,Z) (1)
where V is the value function. A common way to define
the value function is to assess the label quality, as shown
in Fig. 1. The objective can be specified as minimizing the
distance D(.) between the unobserved ground truths Y and
aggregated label A(X,Z):

max
O

EZ∼OD(Y,A(X,Z)) (2)

The setting in Eq. 2 is common in the literature (Ranade
and Varshney 2012). Given the thrive of machine learning,
another possible way is to define the value function as the
test set performance of the resulting ML models, as shown
in Fig 1.

max
O

EZ∼O
∑

x,y∼Dtest

f(x, y; θ∗)

θ∗ ← argmin
θ
L(X,Z)

(3)

where the loss function L can vary depends on tasks.
The followings of this section discusses the work (Liao,

Kar, and Fidler 2021) that provides us several practices on
efficient label aggregation A (R1). With A, we move on
to approach the optimization problem in Eq. 3 to discuss
the way to efficiently assign tasks to suitable workers (R2).
Lastly, we are interested in analyzing individual worker’s
contributions toward the model performances, which can po-
tentially incentives workers to contribute more (R3)

R1: Efficient Label Aggregation
In the work (Liao, Kar, and Fidler 2021), the authors provide
several practices on efficient label aggregation. Given a fixed
set of annotations Z, they incorporate a semi-supervised
learned neural networks with a probabilistic framework. The
proposed framework together with the suggested practices
give us a 2.7x improvement compared to the prior art (Bran-
son, Van Horn, and Perona 2017) on ImageNet-100. Also,
it provides a realistic worker simulation that allows large-
scale studies on different design factors, e.g., the number of
workers, the model update frequency, the number of gold
standard questions, etc. This paper stands between automatic
labeling and manual labeling, therefore, giving us both the
robustness and efficiency.

R2: Task Assignment
Built upon the label aggregation A(.) from the prior
art (Liao, Kar, and Fidler 2021), we are interested in how
to efficiently acquire the annotations Z. The problem is dif-
ferent from active learning (Sener and Savarese 2018) since
it encounters the exploration and exploitation dilemma of
worker skills estimation. The problem is different from ban-
dit for crowdsourcing (Rangi and Franceschetti 2018) since
it needs to consider semi-supervised learned model uncer-
tainties. We take the first step by measuring how tightly an
annotation zij and paremter posteriors θ,W (model param-
eters and estimated worker skills) are connected. Inspired by
BALD (Houlsby et al. 2011), we measure it by computing
mutual information:

BALD: I(zij , (θ,W )) = H(zij)−H(zij |θ,W ) (4)

where I and H are mutual information and entropy, respec-
tively. We provide preliminary experiments in Sec. 4.

R3: Worker Contributions w.r.t. Models
Worker contributions are usually estimated by the number of
annotation they provide. This does not consider the worker
quality and might enocourage lazyness. In data-centric anal-
ysis, data contributions can be estimated by influential func-
tion (Koh and Liang 2017) or gradient in linearized net-
works (Achille et al. 2020). Assume the label aggregation
function A(X,Z, θ) is differentiable, we can derive the gra-
dients of the loss w.r.t. annotation:

∇Z
∑

x,y∼Dtest

L(x, y;φ∗) = ∇Ŷ
∑

x.y∼Dtest

L(x, y;φ∗)∇ZA(X,Z)

φ∗ ← argmin
φ
L(X, Ŷ ), Ŷ ← A(X,Z)

(5)

4 Preliminary Evaluation
We provide several preliminary evaluations of efficient label
aggregation (R1) and task assignment (R2) in this section.

Label Aggregation
In the work (Liao, Kar, and Fidler 2021), the authors conduct
the experiments on ImageNet-100 and the simulated work-
ers, initialized by the feedbacks curated from AMT. The
proposed method includes a semi-supervised learned model
and several practices including better calibration, the fea-
ture extractor initialized by self-supervised learning, better
stopping criterion, etc. The proposed method provides 2.7x
efficiency compared to “Lean” (Branson, Van Horn, and Per-
ona 2017) and 6.7x efficiency compared to manual annota-
tion. The paper also observes that the efficiency of the label
aggregation can be benefited by having a sense of dataset
granularity a priori.

Task Assignment
We use a 5-class toy classification task as the testbed. The
data X is a two-dimensional vector and the simulated work-
ers are modelled by 5-by-5 confusion matrixes. The worker



skills and the model parameters are re-estimated at each time
step. We compare the effectiveness of the acquisition func-
tion in Eq. 4 (BALD) with greedy and random sampling ap-
proaches. The preliminary experiments show that BALD can
outperform the baselines, but fail when the workers skills are
well-estimated at the beginning. Also, the cost and time con-
straints are not considered so far.

5 Discussion
In this research abstract, I want to emphasize the need of
systematically performing data labeling, data cleaning, and
data analysis. With the robust and efficient dataset creation
pipeline, we can systematically improve datasets and there-
fore improve nearly all machine learning models at the same
time.
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