Human-in-the-loop mixup
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Abstract

Synthetic data is powering advances in machine learning;
however, it is not always clear if synthetic labels are per-
ceptually sensible to humans. We take a step towards under-
standing human perceptual alignment of the synthetic labels
in mixup, a powerful regularizer shown to improve model ro-
bustness, generalization, and calibration. We find that human
perception does not consistently align with the labels tradi-
tionally used for synthetic points, and that aligning mixing
coefficients with human perception has several advantages.

Training on synthetic data has unlocked tremendous ad-
vances in machine learning (Silver et al. 2016; de Melo et al.
2022; Emam et al. 2021; Jordon et al. 2022). However, it is
not always clear whether the labels used for synthetic exam-
ples align with human perception. Aligning networks could
help ensure model reliability and trustworthiness (Nanda
et al. 2021; Chen et al. 2022). Therefore, it is worth veri-
fying whether synthetic data aligns with human perception,
and if not, whether training with human-relabeled examples
improves model performance.

In this work, we take a step in this direction by fo-
cusing on mixup (Zhang et al. 2017): a method whereby
a model is trained only on synthetic, linear combinations
of conventional training examples. We focus on mixup for
three key reasons. First, the generative process for synthetic
examples is very simple. Second, despite this simplicity,
mixup is a powerful and popular training-time method which
has been leveraged to address model fairness (Chuang and
Mroueh 2020), improve model calibration (Thulasidasan
et al. 2019), and increase model robustness via implicitly
regularizing the form of category boundaries learned (Zhang
et al. 2020), and is frequently used as a strong benchmark for
many new data augmentation and regularization techniques
(Hendrycks et al. 2019, 2022). Third, prior work in human
categorical perception — revealing that humans show non-
linear “warping” effects along category boundaries (Harnad
2003; Folstein, Palmeri, and Gauthier 2013; Goldstone and
Hendrickson 2010) — leads us to believe that humans will
differ in their percepts from the linear category boundaries
encouraged by mixup.

To that end, we consider whether mixup labels match hu-
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man perception, and if not, how the labeling scheme can be
improved to better align with human intuition and poten-
tially enhance model performance. We see our work as tak-
ing a small step in the exciting direction of a human-centric
perspective on synthetic data used to train ML systems.

Background

We first review mixup (Zhang et al. 2017) and expli-
cate the recipe by which synthetic examples are cre-
ated. We assume access to a finite set of N samples
{(@1,91), (22,32), - , (@ yn)}. mixup training (Zhang
et al. 2017) consists of constructing synthetic training exam-
ples (Z, %) via linear combinations of pairs of the training
observations (z;,;), (zj,y;) for ¢,j € [1, N], correspond-
ing to the following data and label mixing functions:

Data Mixing: f(z;,2j, A\f) = Asz; + (1 — Ap)zj = 7,
Label Mixing: g(vi,yj, A\g) = Ag¥i + (1 — Xg)y; = 7,

where Ay and )\, are defined as the data mixing coefficient
and label mixing coefficient, respectively. We refer to the
combined images z;,x; and their labels y;,y; as the end-
points. For a specified mixing coefficient A, we denote the
resultant image as Z. mixup typically assumes Ay = 4. in-
stead decouple the data and label mixing functions.

Mixing Coefficient from Human Perception

We consider a generalized mixup where the data and label
mixing functions can have different coefficients. We are par-
ticularly interested to find the intrinsic label mixing coef-
ficient A4 that best matches human perception. We employ
crowdsourcing where human annotators estimate A\, under
various settings (which we refer to as A, for human).

Task We recruit N = 33 participants from Prolific
(Palan and Schitter 2018) to infer A\, for a mixed im-
age. Participants are told the endpoint labels of the images
mixed and asked to indicate their inference (\;) and con-
fidence (w) in this inference via sliders. We follow Prelec
(2004); O’Hagan et al. (2006); Chung et al. (2019) and
ask participants to respond how they think others would
respond. Mixed images are constructed by combining two
CIFAR-10 (Krizhevsky 2009) images, with Ay drawn from
{0.1,0.25,0.5,0.75,0.9}. A total of N = 810 mixed im-
ages were each seen by at least two different participants.
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Figure 1: Example of averaged human inferences (\p) over mixed
examples, compared against the generating mixing coefficient Ay.

Results On aggregate, participants recover close to the
generating coefficient when considering the median over all
images for a given mixing coefficient. However, error bars
are wide and a closer look at how individual images are
relabeled (see Fig. 1) reveals significant deviations which
suggest human perception is not consistently aligned with
the mixing coefficient. We therefore think calibration at the
aggregate-level is likely due to averaging effects which may
cancel out differences in participants’ percepts. Inspecting
the inferred mixing coefficient between particularly classes
— as in Fig. 2 — reveals marked differences between human
percepts and the labeling policy traditionally used in mixup.
We also find that participants’ confidence in their inferred
mixing coefficients somewhat tracks the degree of ambigu-
ity of the original images that are combined.
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Figure 2: Hand-picked extracted “category boundary” from elicited
inferences. People diverge from linearity in the generating coeffi-
cient. Ay is depicted against A, (blue) and classical A4 (red).

Learning with Human Relabelings

Given we find that human perception does not uniformly
align with the traditional, linear target mixing target policy
used in mixup at an individual level, we hypothesize that
incorporating the human-elicited relabelings instead of the
default mixup labels may improve model performance.

Setup We train a PreAct ResNet-18 (He et al. 2015) over
7,000 regular CIFAR-10 combined with the 810 synthet-
ically mixed images where we vary the labels. While we
would ideally study human relabelings for every synthetic

Labeling Scheme CE Calib FGSM

Regular (No Aug) 225 029 14.53
+ mixup Labels 2.19 028 14.35
+ Ours (Agg, An, Only) 227  0.28 15.07
+ Ours (Sep, Ay, Only) 201 027 13.33
+ Ours (Agg, Ap withw)  2.09  0.27 14.01
+ Ours (Sep, A, withw)  1.83 024  11.81

Table 1: Average performance of models trained on different labels
for the N=810 synthetic augmenting images. Regular (No Aug)
does not train on any synthetically combined mixup images.

image that could generated with f, we only have labels for a
small subset and therefore instead compare using our labels
versus the traditional mixup labels over a finite, augmenting
set of the combined images. 5 seeds are run per variant.

Our Label Varieties We consider four variants of our la-
bels: {average over participants (Agg), separate labels per
participant (Sep)} x {just A, , A with w}. For varieties
where human confidence is used, we smooth the label based
on an exponentially-decaying transformation (i.e., smooth-
ing = y*) of the predicted confidence; here, v = 0.005.

Evaluation We evaluate a suite of metrics over 3,000
examples from CIFAR-10H, a dataset containing labels
from many humans over the CIFAR-10 test set (Peterson
et al. 2019). We compare: cross entropy between the model-
predicted and the human-derived label distributions (CE),
model calibration following (Hendrycks et al. 2022) and ro-
bustness to the Fast Gradient Sign Method (FGSM) adver-
sarial attack (Goodfellow, Shlens, and Szegedy 2014).

Results Table 1 reveals that labeling mixed examples with
human relabelings has the potential to improve model gen-
eralization, calibration, and robustness over the traditional
synthetic labels used in mixup. In particular, we find that: 1)
learning on separated, non-aggregated labels is beneficial,
highlight the importance of capturing and maintaining inter-
annotator differences in machine learning datasets (Prab-
hakaran, Davani, and Diaz 2021; Uma, Almanea, and Poe-
sio 2022; Diaz et al. 2022), and 2) human confidence can be
leveraged to construct more potent supervisory signals, indi-
cating that studies aimed at aligning synthetic data to human
percepts could benefit from also capturing and representing
human uncertainty (Collins, Bhatt, and Weller 2022).

Conclusions and Future Work

While we acknowledge that our results are early and ought
to be scaled — we find that the synthetic examples classically
used in mixup may differ in fundamental ways from human
perception, which if altered to align with individual human
percepts (adjusted by human confidence), have potential to
improve model performance. Our work also motivates the
design of automated relabeling procedures for synthetic ex-
amples which leverage elicited human data (e.g., training
a model to predict a likely human’s mixing coefficient) to
sidestep inherent issues with scaling human annotation over
the (infinite) space of possible synthetic examples.
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