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Abstract
We motivate why the science of learning to reject model pre-
dictions is central to ML, and why human computation has a
lead role in this effort.

Introduction
For decades, the primary way to develop and assess machine
learning (ML) models (and one of the primary avenues to
publication) has been based on accuracy metrics (e.g., preci-
sion, recall, F1, AUC). The need to beat leader-boards when
publishing, with public datasets and rankings, to some extent
exacerbated this focus on accuracy metrics, at least for clas-
sification models. There is nothing bad in efforts to improve
model accuracy: they should stay among the main goals of
ML research. But we argue that one of the reasons for the
disconnect between the amazing progresses of ML research
(and the corresponding expectations of professionals in any
field that are now sky high) and the limited adoption of ML
in the enterprise is the focus on one aspect of the problem
only, and on the fact that we have not paid enough attention
to how and why models are used in practice, and to the as-
pects and metrics that are relevant to enterprises when they
adopt and deploy a model.

In this paper, we take an intentionally provocative stance
and state that accuracy metrics are optional, desirable prop-
erties of an ML model that are sometimes marginal with
respect to other metrics rarely addressed in the literature,
if at all. To this end, we start by taking a critical look at
the use of ML models in typical enterprises scenarios, and
from there abstract a simplified but general AI workflow fol-
lowed in practice. We then present an analysis on how cur-
rent metrics— both the accuracy metrics and some more re-
cent proposals—are misaligned with the value and cost in-
duced from the workflow. We come to conclusion that what
we need is a new set of cost (loss) metrics as well as a sci-
ence for learning when to reject the inferences done by an
ML model - and correspondingly for identifying subsets of
items where we can trust the model.

We then switch our discussion to the scientific progress
related to those problems: where are we now and what can
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Figure 1: Typical implementation of ML models into an en-
terprise workflow.

human computation do? We start by reviewing the ongoing
work in ML and human computation, including the recent
effort on data excellence and hybrid human-machine sys-
tems. We argue that human computation can play a lead role
in providing methods for model rejection, yet discussions on
this topic are largely missing. We discuss opportunities for
research on metric definition, ML failure detection and char-
acterization, and building the rejector, all involving crowds.

AI Workflows and the Metrics that Matter
Figure 1 shows the typical way in which AI solutions are de-
ployed in an end-to-end enterprise workflow. First, we either
reuse or fine-tune a pre-trained model, or use it in combi-
nation with some task-specific model. Either way, we have



some ML classifier m that, given an input i ∈ I (where
I is a possibly infinite set of items to classify), produces a
predicted class and a confidence (or a distribution of pre-
dicted class with confidences). Almost invariably today in
any model deployment there is then a filtering based on
whether the confidence is greater than some threshold, and
if so the prediction is applied, else a default path is followed
- most often the very same path that was there before the
introduction of AI in the process. This is true from reading
Xrays to detecting intents in a chatbot to automatically rout-
ing requests and on to nearly any use case we can imagine.

From this simple description we can draw a few observa-
tions: First, the threshold and the system behavior depend
on the “cost” of machine errors and its relation to the cost
of a rejection and the value of a correct machine prediction.
Let’s refer to the value of a correct prediction as V , to the
value (cost) of following the default flow as Cd and to the
cost of a wrong prediction as Cw = K · Cd (that is, we ex-
press Cw in terms of how ”bad” is an erroneous prediction
compared to the default flow). Also, for simplicity, let’s as-
sume that V = −Cd (this is both reasonable and to simplify
the presentation, but none of the concepts below depends on
this assumption), and let’s normalize by taking V = 1, again
for simplicity. If the enterprise has a sense for the value of
K, then the confidence threshold descends from that, and so
does the expected utility we get from each execution of the
workflow. The actual math and values are not relevant to the
discussion, but simple math (omitted) shows that the opti-
mal threshold T is T = K−1

K+1 , assuming the model is well
calibrated. Similarly, we can show that the expected value
for each prediction with confidence c is

E[value] = −1 · ρt + (1− ρt) · (c(K + 1)–K) (1)

where ρt is the probability of a prediction confidence being
below the selected threshold t.

The second observation is that if we have a well-calibrated
model with arbitrarily bad accuracy α, we can still get value
from it. Having no model at all gives us a value of−n to pro-
cess n items (remember Cd = −1). Having a really inaccu-
rate (but well-calibrated!) model that, in the rare proportion
of cases hcwhere it has high confidence is correct, gives us a
value of−n ·(1−hc)+n∗hc·, which is higher. In theory hc
can be arbitrarily small and we still obtain value. In practice
this is not the case as the decision to adopt AI comes with
development, deployment, testing and management costs so
there is some minimal value below which AI adoption does
not make sense.

Notice that commonly adopted measures of calibration er-
rors, such as the Expected Calibration Error (ECE) and its
variation (Nixon et al. 2019) (eg, based on how we bin the
samples) are not part of the above formulas and it is easy to
show that they do not correspond to the metric we want to
improve.

In this, it is important to point out that we are not just re-
ferring to far fetched corner cases. The ”problem” with com-
monly adopted metrics of calibration error is that, while they
are valuable in helping us to get a sense of the model cali-
bration as a whole and they are independent of any threshold

T or cost structure, that is also their limit. Indeed, when we
apply a model as per the workflow above we only really care
about calibration around the confidence threshold T , that ei-
ther would take predictions we (incorrectly) reject above the
threshold, or that take predictions we hazardously accept be-
low the threshold, where they belong. It is not uncommon for
calibration techniques such as temperature scaling to show
spectacular ECE results but if our threshold is 0.8, we really
don’t care about error in the 0.1-0.2 range, nor we care if a
confidence is 0.999 or 0.85.

Other measures of calibration errors seem more mean-
ingful in this regard: for example, we can measure the dif-
ference between expected value as per the formula above
(which does not depend on prediction correctness, only on
confidence values) and the actual value measured on a test
set given the threshold T based on actual correctness of
predictions. If the model confidences represent probabilities
and the model is calibrated, then the difference is only due to
statistical sampling error, and as the test dataset increases in
size it should go towards zero. If the model is not calibrated,
then the difference has two sources: the error due to cali-
bration and the error due to the fact that T was set based on
optimal calibration. Another approach is to select the thresh-
old Tv not based on the above formula but empirically based
on a validation set, by picking the threshold that minimizes
the cost over that dataset. In this case, the difference between
the theoretical threshold T (which assumes calibration) and
Tv grows as the calibration error grows. These are just two
examples of metrics around which we have not developed
a theory yet but that seem promising in terms of defining a
notion of calibration error that, when minimized, leads to a
higher expected value.

Last but not least, the same discussion we had above for
accuracy (that is: it’s ok if we are accurate for an arbitrarily
small subset of items) also applies to calibration! In princi-
ple, if we had a magic way to know that our modelm is well
calibrated for a subset Ic ⊆ I of items, and we knew, given
an item i, how to tell if i ∈ I , then we would have a useful
model, no matter what our cost structure is, no matter the
accuracy, and no matter the overall calibration over I .

At some point the problem becomes recursive and we
need to draw the line ( knowing Ic is kind of the same thing
as saying that we are confident about our confidence mea-
sures). But the main point remain: the better we are able to
identify subset of items for which our model m is calibrated
- according to the metrics defined above - the lower is the
cost for our deployment of m in an AI workflow.

Now, because in this paper we assume that m is given to
us and that the decision to accept or reject examples is done
downstream - as it often is in reality, this means that we need
to equip AI practitioners with a ”science of rejection” that
helps build acceptance or rejection logic for each prediction
- either by recalibrating a model and/or by identifying areas
of I where we can and cannot trust m.

Where Are We Now?
Confidence Calibration aims at making the model predic-
tion confidence to be representative of the likelihood of the



prediction to be correct. Typical methods smooth the train-
ing labels by converting a single hard label into a probability
distribution using certain heuristics (Szegedy et al. 2016),
e.g., by reducing the probability of the label and amortizing
the reduced probability over other labels. Such an approach
has shown to be effective but again our concern is with the
metric that the approaches optimize. Furthermore, it has re-
cently been shown that while label smoothing can prevent
neural nets from becoming over-confident, it results in loss
of information about resemblances between data instances
(Müller, Kornblith, and Hinton 2019). From the perspective
of ML failures, label smoothing only deals with biases in the
label and cannot deal with those in the feature space.
Adversarial Training instead, can reduce such biases in the
feature space by generating adversarial instances (Szegedy
et al. 2013), also called out-of-distribution instances as they
are not captured in the training data. The idea is developed
driven by the observation that imperceptible differences in
the processed data can lead to prediction failures. The ap-
proach however can lead to a skewed distribution of the
generated instances that are similar to existing training in-
stances. In particular, for certain features that are missing in
the training data, it’s unlikely that adversarial training can
generate such data items.
Data Excellence is a recent effort to enhance the quality of
training data through human discovery of items that are chal-
lenging to ML models, especially the unknown unknowns
(i.e., items on which the model makes high confidence er-
rors) (Attenberg, Ipeirotis, and Provost 2011). Unlike ma-
chines that fully rely on knowledge explicitly encoded in
predefined training data, humans excel at leveraging broad,
tacit, and contextual knowledge in decision making and jus-
tification. Human computation has, therefore, emerged as a
new, promising approach to detecting unknown unknowns.
A seminal work by Attenberg et al. propose to ask humans
to gather publicly accessible instances that are potentially
difficult for the model to handle (Attenberg, Ipeirotis, and
Provost 2011). Lakkaraju et al. introduce a data partition-
ing technique that first organises the data into multiple par-
titions based on feature similarity, and then uses an explore-
exploit strategy to search for unknown unknown instances
across these partitions (Lakkaraju et al. 2017). An impor-
tant finding in human computation studies reveals that un-
known unknowns often come with an internal consistency,
making them particularly suitable to be described by human
language building on top of concepts (Liu et al. 2020).

There is recently a surge of interest on this topic from
both academia and industry. HCOMP recently launched the
CATS4ML challenge1 to leverage crowdsourcing for un-
known unknowns discovery; Facebook recently introduced
the Dynabench platform2 for a similar purpose.

Despite that, the recent effort has focused on data only,
taking a bottom-up approach, that is: by collecting better
data we hope the machines will learn what is needed. The
assumption however comes without any theoretical guaran-
tee or strong empirical evidence.

1https://cats4ml.humancomputation.com
2https://dynabench.org

Hybrid Human-Machine Systems tackle the process of
solving classification problems by leveraging both humans
and machines (Raghu et al. 2019; Wilder, Horvitz, and Ka-
mar 2020). Initial work focused on very interesting ways to
do this, from learning crowd vote aggregation models from
“features” of the crowd task (Kamar, Hacker, and Horvitz
2012), to leveraging crowds to learn features of ML models,
as in the brilliant paper by Bernstein and colleagues as well
as others (Cheng and Bernstein 2015; Rodriguez, Daniel,
and Casati 2014). More recently, proposals have emerged
based on training an ML model for a task and then first us-
ing that model to classify, then asking humans if that model’s
confidence is not high enough (Callaghan et al. 2018). The
effectiveness of such an approach is, consequently, heavily
dependent on the reliability of machine confidence, which
has shown to be very poor especially for deep learning (Guo
et al. 2017; Balda, Behboodi, and Mathar 2020).

What Can Human Computation Do?
Our literature analysis points to the fact that research from
existing efforts only provides partial solutions to desirable
ML systems. The problem of model rejection has been sel-
dom discussed in the human computation community.

The problem is closely related to the ML reliability issue
that is heatedly discussed across many other communities,
together with other issues such as transparency and fairness.
Within Computer Science, discussions have been revolving
around the relation between systems and people, e.g., the
importance of human centrality. A visible trend is the fast
growing work of human-AI interaction (Amershi et al. 2019;
Liao, Gruen, and Miller 2020). Much of those work takes the
angle of humans as users or stakeholders; in comparison, the
computational roles of humans in the process of better mak-
ing ML systems or in the functioning of hybrid human-AI
systems are seemingly less discussed. We note that human
involvement in the system (creation) is key to bridge the gap
between the need of stakeholders and the engineering of the
system, hence of great scientific relevance to the engineering
communities on ML, data, and systems.

Human computation started with the very idea of leverag-
ing human intelligence to solve tasks that are beyond the ca-
pability of automated systems, considering specifically the
computational roles of humans without ignoring the per-
sonal and social properties. Responding to the model rejec-
tion problem, the key research question is the following:
RQ: How can human computation provide an approach to
tell when machine learning systems fail? Answers to this
question can provide guidance for collecting high-utility
data for model training and allow for safe decision delega-
tion to machines. Having such an approach can, therefore,
largely benefit data creation and hybrid decision-making,
and together, promise a human-in-the-loop ML system that
can be relied upon. We extrapolate a non-exhaustive list of
sub-questions as follows:
SRQ 1: What are the proper metrics for the cost of using ML
with rejection? Metrics should be re-considered to measure
the cost-effectiveness of a hybrid human-AI system with a
selective classifier whose prediction can be rejected. Follow-



ing cost needs to be taken into account in the functioning of
the system: 1) cost of wrong predictions by the ML model.
Such cost is task-specific: the false positive and false neg-
ative should be weighted according to the task; 2) cost of
human-made decisions. In the creation of the system, cost
induced by human involvement in creating the classifier and
the rejector should also be considered.

SRQ 2: How to involve the right stakeholders to report on
machine learning failures? We can imagine that not all fail-
ures are easily detectable by random crowds, especially in
social contexts where the perception of the quality of the ser-
vices is dependent on personal preferences or cultural back-
ground. Opening a channel where stakeholders can effec-
tively report on their experiences is the first key step to the
rejection problem. The “how” in this question is, therefore,
relevant to both the “who” and “through which means”.

SRQ 3: How to effectively characterize machine learning
failures? Characterization of failures can either be done on
a per-item basis, i.e., using examples as description, or on
the conceptual level. The latter would be preferred to pro-
vide a cognizable description of “when the model fails” to
developers and stakeholders.

Feasibility of such a “symbolic” approach is less a con-
cern given the internal consistency of machine unknowns.
In addition to the question of “which form” the description
should be, it is also important to consider “what materials” to
use in human characterization. We argue that the important
factor is the involvement of models, through e.g., explain-
able AI techniques, such that the internal mechanism of the
model can be exposed to allow for more effective identifi-
cation of the failure reasons. In fact, recent work has shown
that human computation can be a favorable approach to ex-
planation itself (Balayn et al. 2021).

SRQ 4: How to build the rejector? A smart rejector can be
built based on human feedback on machine failures. This
can be done in a data-driven way like the normal ML models
are trained, or through a hybrid data- and knowledge-driven
method that allows for more explicit control over the items
on which the prediction should be rejected. Reliability of
human feedback should be considered, as to how human-
labeled data has been used for ML training.

In summary, we propose a new frame for evaluation where
we argue that i) rejection - and related relevant metrics -
should be a first class citizen of ML research, both theory
and practice, that ii) hcomp is a promising way to go, but
that iii) it requires very different methods than hcomp for
data labeling.
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