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ABSTRACT
A growing number of studies have demonstrated that collective
intelligence is an important factor in team success. Recent studies
have also demonstrated the utility of real-time collaborative pro-
cess metrics for measuring and predicting collective intelligence as
teams work together, opening the possibility of their use to guide
interventions to improve team performance. We report the results
of an experiment in which teams collaborated on a search and
rescue task online while some were randomly assigned to see real-
time displays of their team’s collective effort – the collaborative
process metrics our pilot studies showed most strongly predicted
task performance. However, we find that providing this informa-
tion does not reliably improve team performance, in some cases
leading teams to alter behavior to maximize effort to the detriment
of other processes and performance. We discuss the implications
of our results for the design of digital nudges as interventions into
collaborative processes and collective intelligence.

CCS CONCEPTS
• Applied computing → Psychology; • Human-centered com-
puting→ Empirical studies in collaborative and social com-
puting.
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1 INTRODUCTION
Collective intelligence is the ability of a group to perform a wide
range of tasks or achieve a wide range of goals in different envi-
ronments that vary in complexity [11, 12]. Extant work has demon-
strated that measures of a team’s collective intelligence are predic-
tive of their future performance [2, 7], as well as real-time measures
of collaborative processes captured as groups are working to pre-
dict collective intelligence [4, 9, 13]. This raises the question of
whether real-time collaborative process metrics can be used as an
intervention to enhance collective intelligence as teams collaborate.

There is a reasonable basis to expect that interventions that
raise awareness of collaborative processes in teams should lead to
better performance. Widely-accepted frameworks for team coach-
ing [6] supported by empirical evidence [10? ] demonstrate that
providing real-time feedback to teams as they collaborate leads
to significantly better performance. This has been supported by

related studies incorporating technology-based interventions in-
cluding real-time feedback displays focused on relative speaking
time and task engagement [1, 3] should be beneficial. However,
there is other evidence demonstrating that attempts to make such
real-time technology-based interventions can be more mixed [4]. In
the experiment we report here, we examined whether making team
members aware of the quality of their collaboration by display-
ing real-time collaborative process metrics as they worked could
improve collective intelligence and collaboration. We specifically
focused on the effect of collaborators’ awareness of collective effort,
using a measure developed and validated in recent research [9] and
which our pilot tests demonstrated as a strong predictor of perfor-
mance on our task. We randomly assigned some collaborators to
see real-time displays of their collective effort as they worked. As
we report, we found that the intervention did not reliably improve
performance, and in some cases, led collaborators to overly focus
on increasing their collective effort at the expense of their overall
performance.

2 METHODS
Team Minimap

We conducted our experiment using a multi-agent implemen-
tation of a Search and Rescue task in the Minimap environment
developed by Nguyen and Gonzalez [8], herein referred to as the
Team Minimap task. In this setting, a team of four human players
navigated a grid-like environment to search for and rescue victims
of three types: minor, serious, and critical. The team members were
assigned one of two distinct roles: medics and engineers. Medics
were able to rescue minor, serious, and critical victims; however,
an engineer also had to be adjacent to a critical victim for it to be
rescued. Engineers, on the other hand, could only rescue minor
victims on their own but had the ability to open doors and clear
the rubble that surrounded the serious victims. The team’s goal
was to maximize the points earned by collaborating to rescue as
many victims as possible. The layout of the environment and victim
locations is held constant and contains X minor, X serious, and X
critical victims.

2.1 Measures of Collective Intelligence
Building on a team effectiveness framework introduced by Hack-
man [5], Riedl et al. [9] demonstrated three real-time collaborative
process measures are significant predictors of collective intelligence,
capturing teams’ use of member knowledge and skill, the quality of
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Figure 1: Task setting for the "Line" display condition, as
shown in our task instructions to participants. Participants
only have a limited view of their immediate surroundings
in the environment, but can also see the positions of their
teammates.

their task strategy, and the sufficiency of collective effort. Building
on that research, we have implemented these metrics in other task
contexts, including an online Search and Rescue game [13], and we
refer to them collectively as Team Effectiveness Diagnostic (TED)
metrics.

In this experiment, we focused on the TED metric capturing
collective effort. In developing this TED metric, we adapted its op-
erationalization to a search and rescue task environment to capture
the behaviors in this context that signify effort. In this setting, we
formalize effort as a linear combination of the number of victims
saved, doors opened, rubble cleared, and cells moved by each team
member. In our calculations, we weight some activities more than
others; each victim saved is weighted 20 times higher than other in-
puts, and the number of cells moved is scaled for each player based
on the maximum number of cells moved over the measurement
period. The calculation of effort is made in real-time, captured in
each three-second interval.

2.2 Visual Displays
Our experiment included four different conditions, including a
control condition plus three different variations on a display of the
real-time TED Effort metric. In our control condition (No TED),
we provide no information about collective effort to participants.
In the three display conditions, depicted in Figure 2, we show the
TED Effort metric, updated in three-second intervals, depicted in
either a numeric, line graph, or gauge format. In both the gauge
and numeric display formats, only the current value of TED Effort
is shown, whereas the line graph shows the trend based on the
most recent 10 values. We elected to incorporate conditions with
different display formats in order to distinguish the effect of the
information alone (i.e., the Numeric condition), versus a display
including a normative reference point (i.e., the Gauge condition), or
a display demonstrating relative progress (i.e., the Line condition).

(a) Numeric (b) Gauge (c) Line

Figure 2: The three different TED display conditions each
have a distinct representation of the TED Effort.

Figure 3: Score, as expressed by the total number of points
earned, by condition.

3 RESULTS & DISCUSSION
We recruited participants via the Amazon Mechanical Turk plat-
form, resulting in complete data from 436 participants. These partic-
ipants were randomly assigned to groups of four in each condition.
This resulted in 32 groups in the No TED condition, 25 groups in the
Gauge condition, 27 groups in the Line condition, and 25 groups in
the Numeric condition. All teams completed two 5-minute episodes
of the task and were compensated with a base payment in addition
to a bonus proportional to the number of points earned by their
team. Participants in the display conditions were not informed how
the effort was calculated, solely that it measured the collective effort
of their team.

The average score over both episodes, as measured by the num-
ber of points earned, is shown for each condition in Figure 3. We
observe no significant difference between any of the TED display
conditions, and only a marginally-significant difference (𝑝 < 0.05)
between the Numeric display condition and the No TED control
condition; no other conditions were significant. This result tells
us that providing the supplementary TED information did not di-
rectly improve team performance, and in the case of the Numeric
condition resulted in a marginal decrease.

To further explore our findings, we examined our data for evi-
dence of whether or not the participants were aware of the feedback
displays by evaluating if they altered their behavior in any system-
atic way.We observed that the participants in the TED Effort display
conditions all registered significantly higher values of effort than
participants in the No TED control condition, shown in Figure 4.
We interpret this pattern as indicating that participants noted the
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Figure 4: Average team effort per 3-second interval by condi-
tion. Effort is scaled via min-max scaling to be in the [0, 1]
range.

Figure 5: Average number of cells covered by each team per
three-second interval.

information, and responded, but unfortunately not in a way that im-
proved performance. We further broke down the TED Effort metric
into its components to better understand how participants changed
their behavior: the only significant difference in behavior between
the NO TED control condition and the others was in the distance
moved, which is shown in Figure 5. Although participants were
not explicitly told which behaviors resulted in changes in the TED
Effort values, it appears that participants learned the association
and moved more to increase the displayed value.

In summary, we are building on extant research on collective
intelligence to explore interventions to improve collaboration. Our
results demonstrate that real-time displays of TED metrics can
shape collaborative behavior, but also come with a cautionary note:
participants may adopt behaviors that are ultimately not conducive
to the maximization of any focal metrics. This is not entirely sur-
prising, given the history of social science research demonstrating
how readily behavior can be shaped by focusing on particular per-
formance metrics. However, our pilot tests, some including displays
of all three TED metrics (including use of knowledge, skill, and
efficiency of task strategy, in addition to effort) suggested that the

amount of information was too complex for participants to pro-
cess while working on the task, and thus had little impact on their
behavior. Thus the question of how to increase collective intelli-
gence via feedback to collaborators remains open. The successful
interventions demonstrated in extant research have involved tasks
that were more heavily influenced by a single type of collaborative
process (such as using primarily information-sharing; e.g., [1]) or
the intervention stimulated a more integrative, team-level consid-
eration of collaborative process (such as the successful nudges in
[4]) versus individual-level adjustments of individual behaviors
which can result in the over-correction we observed here. There-
fore, it is likely that technologically-administered interventions to
improve collective collaborative processes need to facilitate adjust-
ments to collective cognition in order to drive change in collective
intelligence.
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