CrowdLit: Crowd-powered Literature Search

Zhenyao Cai, Anthony Phonethibsavads, Shayan Doroudi
University of California, Irvine
zhenyaoc@uci.edu, tonyphonet@gmail.com, doroudis@uci.edu

Abstract
As scientific literature is rapidly expanding, researchers are faced with the difficulty of finding all the relevant literature to contextualize and influence their own research. There is a proliferation of tools using artificial intelligence to help aid researchers in literature search, but we believe these tools may still miss literature (e.g., ones coming from other disciplines). To address this situation, we introduce Crowd Literature Search, a pipeline that involves crowdworkers or laypeople in the literature search process. We developed CrowdLit, a platform for enabling Crowd Literature Search. We describe various features in CrowdLit and how they can potentially facilitate literature search, scientific communication, and involving the general public in scientific research.

Introduction
The rapid growth of scientific publications makes it nearly impossible for researchers to read all existing literature (Bornmann, Haunschild, and Mutz 2021). This poses the risk of overlooking key studies, leading to potential gaps in knowledge, or what Swanson (1986) has termed “undiscovered public knowledge.” While automated systems have been developed to recommend relevant papers, they often miss cross-disciplinary studies and rely too heavily on a researcher’s judgment, which can inadvertently introduce biases (Kang et al. 2023; Choe et al. 2021). To address this, we introduce the Crowd Literature Search (CLS) pipeline to leverage the collective intelligence of both researchers and the general public to discover a broader spectrum of literature. By involving laypeople (e.g., crowdworkers, citizen scientists, or undergraduate students), it offers a multidimensional perspective on literature discovery, while also enabling public participation in scientific processes. We believe CLS can have learning benefits for both researchers and laypeople; researchers can benefit by improving their scientific communication skills while laypeople can get a low-stakes entry point into research, learn literature search skills, and learn about research that aligns with their interests. We developed CrowdLit, a platform designed to streamline and enhance the CLS experience. A feasibility study of CLS involving professional researchers and crowdworkers showed that while researchers found the CLS approach useful, especially for early-stage projects, non-researchers appreciated the chance to delve into research.

We believe a demonstration of CrowdLit at the HCOMP conference will provide benefit to researchers studying human computation and collective intelligence, as well as valuable feedback to us in furthering our platform.

Crowd Literature Search and CrowdLit
The Crowd Literature Search (CLS) pipeline is designed to integrate crowdworkers1 into the literature search phase of the research process. The CLS pipeline is characterized by five stages, forming an iterative cycle that fosters continuous collaboration between researchers and crowdworkers.

To implement the CLS Pipeline, we developed CrowdLit, a web-based platform where researchers can create and deploy literature search tasks for their research projects to be completed by crowdworkers. CrowdLit is implemented with NodeJS, MongoDB, React, and features that use various APIs including OpenAI’s GPT, CrossRef, Semantic Scholar, Hugging Face. Below we describe the five stages of CLS and how they were implemented in the CrowdLit platform:

Stage One: Researchers Initiate Tasks
Researchers begin by uploading project information. This includes the overarching research question they’re investigating, key terms essential for the literature search, a detailed description of their projects, clarifications on specific jargon and terminologies, and tips on effective literature searching.

In addition to allowing researchers to upload project information, CrowdLit tries to help researchers improve their science communication using large language models. Specifically, we provide a series of options for researchers to improve their project description including “Evaluate your description and get some feedback from AI,” “Add more details in your current description,” “Restructure the description,” and “Detect [jargon] from description.” Each of these tools calls the OpenAI GPT API using a carefully-crafted system message to give feedback to researchers or automate parts of the research communication process.

In addition to allowing researchers to upload project information, CrowdLit tries to help researchers improve their science communication using large language models. Specifically, we provide a series of options for researchers to improve their project description including “Evaluate your description and get some feedback from AI,” “Add more details in your current description,” “Restructure the description,” and “Detect [jargon] from description.” Each of these tools calls the OpenAI GPT API using a carefully-crafted system message to give feedback to researchers or automate parts of the research communication process. For example, automatically detecting jargon would pre-populate a

1In what follows we use the term “crowdworker” to refer to any person contributing to the literature search tasks. While we recruited crowdworkers from Prolific in our feasibility study, we note that these individuals do not need to be paid crowdworkers; they could be citizen scientists or students.
Figure 1: CrowdLit offers AI tools to help researchers make their project descriptions more accessible to the public.

set of domain-specific or advanced words along with definitions that would be shown to crowdworkers; researchers can choose to remove or modify any of these terms and definitions. The project creation interface is shown in Figure 1.

Stage Two: Crowdworker Sense-making At this stage, crowdworkers immerse themselves in the diverse research projects provided by the researchers. They can choose to work on the projects they are interested in. In CrowdLit, we present crowdworkers with the descriptions and terminologies uploaded by researchers (possibly with the help of AI). For jargon, they can hover over the terms to see the definitions.

Stage Three: Active Search Phase The crowdworkers then start their literature search. Using the guidance and key terms provided, they begin their search for relevant literature. They can also interact with other crowdworkers to learn from their searching strategies.

In CrowdLit, users can either manually upload papers or upload just the DOI and the platform will automatically fetch the article information using the CrossRef API. We also have brief tutorials that users can click on to get some guidance about how to conduct literature search (e.g., how to use Google Scholar or conduct keyword-based searches).

Finally, users can also click on the Collected Literature tab at the top of the page. This will take them to another page, where they can review and upvote on literature retrieved by other crowdworkers (see Figure 2).

Stage Four: Feedback Loop and Refinement Researchers take an active role again during this stage. They evaluate the articles sourced by the crowdworkers, assessing them for relevance and quality. Constructive feedback can
Figure 3: Researchers evaluate and give feedback to crowdworkers.

then be provided to the crowdworkers about their selections and any identified gaps. This stage also sees researchers refining and adjusting their project information, in case the direction of their research shifts or becomes clearer.

In CrowdLit, researchers access literature gathered by crowdworkers. We use the Semantic Scholar API to retrieve paper details such as abstracts, summaries, venues, and citation counts. Through the Hugging Face API, we used the ‘paraphrase-mpnet-base-v2’ model to calculate the semantic relevance between the researchers’ research questions and the paper titles and abstracts. This process could help researchers swiftly filter out irrelevant papers; see Figure 3.

Stage Five: Search Strategy Enhancement With feedback in hand, crowdworkers return to their literature search. They refine and optimize their approach, ensuring it’s better aligned with the researcher’s objectives. This iterative process promotes continuous improvement and could result in a more tailored set of literature for the researchers.

Feasibility Study

We have conducted a study to evaluate the feasibility of CLS pipeline as well as our platform. Below we discuss the study design and preliminary results.

Study Design

We recruited researchers from a mailing list of faculty members at a research university, a Slack channel of researchers interested in literature search, and others in the authors’ personal networks. We recruited crowdworkers on Prolific. During our study, each researcher posted 1-2 of their research projects that need literature collection on our platform, after which we tasked crowdworkers with the literature search. Over a 5-day period, both groups engaged with the web system. Crowdworkers were instructed to discover more articles, engage with interactive tutorials on literature search, and review feedback from both researchers and their peers, while researchers provided feedback, evaluated the retrieved literature and refined their project descriptions. We interviewed researchers immediately after they created their project submissions and at the end of the study. We also distributed questionnaires to crowdworkers, capturing their impressions both immediately after their initial system interaction and after their 5-day experience.

Study Results

We collected data from 10 researchers and 55 crowdworkers. Among the crowdworkers, 36 completed the first questionnaire while 19 completed both questionnaires and did work over the 5-day period. Through thematic analysis of the interviews and open-ended questions, we found that:

• 8 out of 10 researchers thought the platform was useful and expressed a desire to use it in the future. They thought it would be useful for gaining a broader understanding of a field through diverse literature, explore existing studies for early-stage projects, and help crowdworkers enhance their research and searching skills.

• 50 out of 55 crowdworkers felt they gained from the experience, including improving their skills in searching and evaluating literature and understanding progress of state-of-the-art research. Three participants noted gaining insights into the nature of research.

• In terms of collaboration between researchers and crowdworkers, all 19 crowdworkers who completed the second questionnaire felt they were at least slightly involved in the research, with 14 of them feeling they were at least moderately involved. Most crowdworkers found researcher feedback helpful and many changed their methods as a result of it. Conversely, researchers felt a more limited sense of collaboration. One advocated for extended interaction, while two wished for direct conversations with crowdworkers to better understand their viewpoints, backgrounds, and interests.

Conclusion and Future Work

In this work, we introduced CrowdLit, a web-based platform that implements the CLS pipeline which is designed to engage crowdworkers in collaborative literature discovery alongside researchers. As a demo, we plan to have researchers from the HCOMP community try CrowdLit and give feedback on its various features. They can either act as researchers and try our project creation interface (including tools to help them with scientific communication) or act as citizen scientists who try searching for literature on other researchers’ projects. In future work, we aim to test CrowdLit in educational settings with high school and undergraduate students to assess its potential for improving search skills and fostering STEM and research interests.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. (2033868). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
References


