
A Logic-based Microtasking Approach for LLMs and Human Processing

Tomoya Kanda, Hiroyoshi Ito, Nobutaka Suzuki, Atsuyuki Morishima
University of Tsukuba

Kasuga 1-2, Tsukuba, Ibaraki, Japan
{akei.tomoya@klis, Ito@slis, nsuzuki@slis, mori@slis}.tsukuba.ac.jp

Abstract

LLMs are rapidly increasing their power and serving as im-
portant information sources. Some existing work suggests
that they show comparable performance with human work-
ers for some tasks. However, human intervention is still re-
quired to obtain high-quality outputs. This demo intends to
raise discussion on whether microtasking is an effective ap-
proach for the purpose. In our demo, instead of submitting
a whole task to LLM, we divide the task into microtasks,
to be generated by a predefined workflow on Crowd4U, a
microtask-based human-in-the-loop data platform that deals
with LLMs as AI workers to complete microtasks. Then,
tasks are automatically assigned to human and AI workers,
according to the logic-based workflow associated with mi-
crotasks. Through this demo, we show that the microtasking
approach is a promising way to combine the power of LLM
and humans, to improve the class of answerable queries, the
quality of answers, and their explainability.

Introduction
Large Language Models (LLMs) are now serving as impor-
tant information sources for many applications. The services
based on the state-of-the-art LLMs, such as ChatGPT, an-
swer correctly some factual questions (Qin et al. 2023).

Although LLMs are expected to be able to answer more
complex questions correctly in the near future, the user
would need to join to obtain the high-quality results, because
LLMs often output logically inconsistent hallucinating an-
swers (van Dis et al. 2023).

This demo will demonstrate that microtasking is a promis-
ing approach to address this problem. In our demo, instead
of submitting a whole task to LLM, we divide the task into
microtasks, to be generated by the predefined logic-based
workflow on Crowd4U, which is a crowdsourcing platform
that deals with LLMs as AI workers that perform microtasks
along with humans(Morishima et al. 2012; Kobayashi, Wak-
abayashi, and Morishima 2021). We assume that the human
workers are expert workers who do better works than LLMs.
Therefore, they are complementary to each other in terms of
scalabirity and speed (LLMs are better), and ability of qual-
ity check of other’s results (humans are better).

Presented at the Works-in-Progress and Demonstrations track,
AAAI HCOMP 2023. Copyright by the authors.

Same(x,y)/open;

Yes or No

Which are incorrect?
1. Match (“HP”, “HP&PS”)
2. Match(“HP”, “HP&CS”)
3. Not Match(“HP&PS”, “HP&CS)

3. is incorrect.

(2)Generate LLMsʼ Task template for “Same(x,y)” (3)Issue Human Verification Task

LLMs Logical Rules and
Structured Data

Human
Workers

Are “x “ and “y “ the same?
Please answer Yes or No

Input

Output

(1)Requester gives a workflow

Figure 1: Workflow for the entity matching scenario. The
processor uses a task template to generate LLMs tasks when
encountering open predicates. After receiving the results, it
checks consistency among other facts and generates human
computation tasks to update prompts or directly fix the re-
sults if it finds inconsistency.

This demo shows that microtasking and techniques devel-
oped for human crowdsourcing can be extended and applied
to take more advantages of both workers; microtasking can
be used to logically decompose the queries to describe clear
semantics, complete a task that consists of exact steps, and
automatically assign tasks to humans for verifying outputs.

Focus of the Demo. Figure 1 overviews how our work-
flow controls task assignment (with an example scenario to
be explained later) (1) The requester gives a workflow in a
set of logical rules, in which some of the predicates are con-
nected to microtasks. (2) When we need to evaluate pred-
icates connected to tasks, the tasks are generated and as-
signed to LLMs to evaluate them1. Then, (3) we ask humans
to perform verification tasks on the LLM results. Our ques-
tion here in the demo is how to design good interaction with
humans in the verification tasks. In this demo, we show a
variety of interaction designs for human verification tasks to
provide an opportunity to discuss the issue. The interaction
designs have to be evaluated in terms of the number of in-
teractions, the user load and the quality improvement. We
focus on the verification tasks because efficient verification
of AI results is the key to deal with AI workers; the result
acts as a trigger to select plausible answers and iterate the
evaluation of AI worker tasks with better prompting.

Comparison with other frameworks. Prompt engineer-
ing is a hot topic to derive appropriate answers from LLMs.

1The programmer can also choose the human-first assignment
in the code. In addition, if AI workers claim that they cannot an-
swer, the task is passed to human workers.

For example, Chain-of-Thought Prompting (Wei et al. 2023;
Kojima et al. 2023) enables LLMs to improve their perfor-
mance by generating step-by-step outputs. Still, since LLMs
do not always generate correct outputs (Daull et al. 2023;
Bang et al. 2023), we need verify LLMs’ outputs. Some
work (Zhao et al. 2023) addresses the problem by referenc-
ing external knowledge bases. Our framework adopts an ex-
plicit logic-based task decomposition, which allows us the
exact computation based on the power of logic processors
such as deduction and inconsistency check.

Symmetric aggregation of AI’s and human’s results (Ya-
mashita et al. 2022), and how to combine novice and expert
workers (Nguyen, Wallace, and Lease 2015) is discussed.
However, they deal with multiple classification tasks only.
In the demo, we address a general mechanism for asymmet-
ric integration of human and AI worker results.

Finding repairs has been widely discussed in data clean-
ing or data integration settings (Arenas, Bertossi, and
Chomicki 1999; Chiang and Miller 2011; Eiter, Fink, and
Stepanova 2014; Lukasiewicz, Malizia, and Vaicenavicius
2019; Prokoshyna et al. 2015). Our setting is different from
the settings in the ordinary data cleaning and integration
settings, in that there are subjects (i.e., LLMs) to dynami-
cally generate data on demand, and we can take advantage
of crowdsourcing in finding repairs.

Scope and Limitations. In our demo, we assume that a
variety of task templates (prompts) are already stored for
predicates and will be updated in a simple way; We do not
focus on how to design task templates with prompting tech-
niques. There are many papers that address prompting and
how to adopt the effective strategies for task updates/change
will be interesting. Building a large database for task tem-
plates is out of the demo’s scope too, although we assume
that we can automatically generate prompts based on exist-
ing knowledge bases such as DBpedia.

Our demo scenarios were developed with GPT-3.5
(Ouyang et al. 2022). We may use a different version in
the demo since LLMs are quickly evolving. Our framework,
however, does not depend on any particular version.

Task Generation and Assignment in
Logic-based Microtasking

Our demo will work on an extended version of
Crowd4U (Morishima et al. 2012), a human-in-the-
loop platform that has been used for 10 years for real-world
projects. We first describe the extended language and ar-
chitecture, then the design space for the human verification
tasks to resolve inconsistency caused by the LLM results.

CyLog
CyLog (Morishima, Fukusumi, and Kitagawa 2016) de-
scribes data (i.e., tuples in relations) as facts, and queries
as rules. The following is a fragment of a CyLog program
extended for the human-in-the-loop LLM processing:

Movie("Harry Potter");

Movie("Harry Potter and Philosopher’s Stone");

Movie("Harry Potter and the Chamber of Secrets");

Match(x,y):- Movie(x), Movie(y), Same(x,y)/open;

Crowd4U

Rule Based Task
Decomposition
And Generation

Human
Workers

Declarative
Project
Description
In CyLog+

LLM TaskPool

TaskResult
Storage

Requesters AI Workers
(LLMs)

HumanTaskPool

LLM Prompt
Controller

Logic Processor

(1)Submit CyLog+ project
written or generated by form

Inconsistency-driven
Task Generation

Prompt Database

Human Task
Template Database

(2)Issue tasks for LLMs

(3)Check inconsistencies
of results

(4)Fix inconsistencies
with human tasks

(5)Get results

Figure 2: Crowd4U architecture for LLMs + Human workers

F :- Match(x,y), Match(y,z), [not Match(x, z)];

The first three lines describe three facts, each of which
states a movie. The fourth line is a rule. Here, Cylog al-
lows predicates (e.g., Same(x,y)) to be open, meaning
that the decision on whether a fact holds is crowdsourced2.
Intuitively, the rule states that, for any two movies x and y,
a microtask to ask whether they are the same or not is gen-
erated (open predicates are associated with task templates
(Figure 1 (top left)), and if the worker says they are the same
movie, we derive a fact (tuple) Match(x,y). CyLog has a
built-in reward system to give semantics for open predicates
based on the game theory. Detail is given in (Morishima,
Fukusumi, and Kitagawa 2016) and omitted.

The last line starting with “F:-” is an inconsistency
rule we introduced for the demo. The line states that for
any pair Match(x,y) and Match(y,z), not having
Match(x,z) leads to a contradiction under the transitiv-
ity law. The user can define global or local logical rules in
CyLog that need to be satisfied. For example, the transitivity
law must be satisfied for any equivalence relationship; an-
other example is that the number of answers to an enumer-
ation query (e.g., “What are universities in Japan?”) must
match with the answer to the question “What is the total
number of universities in Japan?”.

Crowd4U Architecture
Figure 2 illustrates the architecture. The logic-mediated
workflow for dispatching tasks to workers is controlled by
the logic processor. (1) Once the requester submits a CyLog
workflow, (2) the processor generates tasks during the eval-
uation of logic rules; when it encounters an open predicate,
it first assigns tasks to AI workers and (3) then generates
verification tasks according to the task generation policy.
(4) When there are inconsistency rules in the program, and
the processor finds inconsistency among facts, new tasks to
address the inconsistency are generated and assigned to hu-
man workers, which we discuss next. When some inconsis-
tency is found, it generates and issues human computation
tasks to update prompts for re-evaluation or fix the inconsis-
tency.

2Unbounded variables (e.g., Parent(X,Y)/open in Section
) are also allowed.

Showing relevant
base literals

Showing
minimal repairs Ranking Task Decomposition

Simple Advanced

Figure 3: Design Space for Human Verification Tasks. The
most basic one is just to show relevant base literals and ask
humans whether each is correct or not. A variety of advanced
designs can be obtained by combining several strategies.

Figure 4: Human Tasks for Inconsistency Resolution. The
simplest task is inside the box (cf. left side of Figure 3). For
a particular class of inconsistency, Crowd4U can enumerate
minimal repairs to resolve the inconsistency (bottom).

Design Space for Human Verification Tasks
According to the user-specified policy (every time or
when some inconsistency among LLM-generated facts was
found), Crowd4U generates verification tasks to ask humans
to give repairs. For example, we may have three facts that
caused the inconsistency in the transitive law (See the code
in Section and Figure 1). Then, human worker may state
that we should remove the second successful match (i.e.,
Match("HP", "HP&CS")) in the task.

There are a variety of design options for this (Figure 3).
The simplest design is that the task shows the list of rele-
vant base literals that led to the inconsistency (Figure 4 (in-
side the box)). It shows the two matches and one negative
match and asks workers to update some of them to remove
the inconsistency. The first option is to show the potential re-
pairs to fix the inconsistency and the human worker chooses
one of them. Since there are many potential repairs, we of-
ten compute minimal repairs (i.e., minimizing the number
of changes) (Bohannon et al. 2005) (Figure 4 (bottom)). The
second option is to rank the potential repairs or base liter-
als and show the ranked list. AI workers may correctly an-
swer queries in a particular class only. Then, we can learn
the class (Kobayashi, Wakabayashi, and Morishima 2021)
and use it to rank them. The third option is to decompose the
task into smaller ones each of which shows a smaller num-
ber of base literals and repairs to exploit the parallelism of
crowdsourcing. This is effective when we have a large num-
ber of relevant base literals and potential repairs.

Demonstration Scenarios
Logic-mediated Human Task Assignment. The first sce-
nario is the entity matching of movie titles, which we
explained in Section , to demonstrate how the logic-
mediated LLM-human-in-the-loop workflow works. LLMs
often match “Harry Potter” and any of “Harry Potter and the
Philosopher’s Stone” and “Harry Potter and the Chamber of
Secrets,” which introduces inconsistency in terms of transi-
tivity law (Figure 4). When Crowd4U finds an inconsistency
based on the registered rules, inconsistency resolution tasks
will be generated and assigned to human workers.
Exact Computation with Local Concepts. LLMs are gen-
erally weak in both exact computation and computation with
locally (privately) defined concepts. An example is to find
every combination of national universities in Japan that is
within the same prefecture and have no overlapped depart-
ments. Here, the definition of overlapped departments is ex-
plicitly given by the requester - for example, the name of one
department is included in that of the other. Then, he writes
the combination in the logic3.
N-Univ(n,l,d*)/open;

Pair(n1,n2):- N-Univ(n1,l,d1*), N-Univ(n2,l, d2*),

[forall d1’ in d1, d2’ in d2(non-overlap(d1’, d2’));]

non-overlap(d1, d2):-

[true if not (contain(d1, d2) or contain(d2, d1))]

F :- #N-Univ(n), N-Univ(n*), [n!=count(n*)];

Structured Explanation Generation. We show that logic-
based microtasking often supplies correct explanations, in
a case LLMs return incorrect explanations without it. In
this scenario, we use the query about asking blood rela-
tionship between two Japanese Shoguns4 in an open setting
where we have no stored data. LLMs may be able to answer
the question whether the 15th Shogun, Yoshinobu Toku-
gawa (Wikipedia contributors 2023b), is a descendent of the
1st, Ieyasu Tokugawa (Wikipedia contributors 2023a), with-
out microtasking. However, the blood relationship shown
to explain its answer may not. Given the following set of
rules in our rule base, the query :-Ancestor("Ieyasu
Tokugawa", "Yoshinobu Tokugawa") recursively
asks “Who will be the parent of Y” to ChatGPT on the fam-
ily tree and returns an alternative and correct explanation.
Parent(x,y)/open;

Ancestor(x,z):-Ancestor(x,y),Parent(y,z);

:-Ancestor("Ieyasu Tokugawa", "Yoshinobu Tokugawa")

Acknowledgement
We are grateful to Kentaro Miyake, Keito Oishi and all other
members of the Crowd4U team who have been contribut-
ing to the development of the system. This work was sup-
ported by JSPS KAKENHI Grant Number JP22H00508,
JP22K17944, JST CREST Grant Number JPMJCR22M,
Japan.

3For conciseness, we use abbreviations of variables: n, l and
d for name, location and depts, respectively. We also use
numbers for correlation names (e.g., n2 for name as n2). List
variables ends with *.

4The tree is very complex: https://en.wikipedia.org/w/index.
php?title=Template:Tokugawa family tree&oldid=1050258568.

References
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Consis-
tent Query Answers in Inconsistent Databases. In Vianu, V.;
and Papadimitriou, C. H., eds., Proc. of ACM PODS 1999,
68–79. ACM Press.
Bang, Y.; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie,
B.; Lovenia, H.; Ji, Z.; Yu, T.; Chung, W.; Do, Q. V.; Xu,
Y.; and Fung, P. 2023. A Multitask, Multilingual, Multi-
modal Evaluation of ChatGPT on Reasoning, Hallucination,
and Interactivity. arxiv:2302.04023.
Bohannon, P.; Flaster, M.; Fan, W.; and Rastogi, R. 2005.
A Cost-Based Model and Effective Heuristic for Repairing
Constraints by Value Modification. In Özcan, F., ed., Proc.
of ACM SIGMOD 2005, 143–154. ACM.
Chiang, F.; and Miller, R. J. 2011. A unified model for data
and constraint repair. In Proc. of ICDE 2011, 446–457. IEEE
Computer Society.
Daull, X.; Bellot, P.; Bruno, E.; Martin, V.; and Murisasco,
E. 2023. Complex QA and Language Models Hybrid Archi-
tectures, Survey. arxiv:2302.09051.
Eiter, T.; Fink, M.; and Stepanova, D. 2014. Computing
Repairs for Inconsistent DL-programs over EL Ontologies.
In Proc. of Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, volume 8761, 426–441. Springer.
Kobayashi, M.; Wakabayashi, K.; and Morishima, A. 2021.
Human+AI Crowd Task Assignment Considering Result
Quality Requirements. In Kamar, E.; and Luther, K., eds.,
Proc. of AAAI HCOMP 2021, 97–107. AAAI Press.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916.
Lukasiewicz, T.; Malizia, E.; and Vaicenavicius, A. 2019.
Complexity of Inconsistency-Tolerant Query Answering in
Datalog+/- under Cardinality-Based Repairs. In Proc. of
AAAI, 33(01), 2962–2969. AAAI Press.
Morishima, A.; Fukusumi, S.; and Kitagawa, H. 2016. Cy-
Log/Game aspect: An approach to separation of concerns in
crowdsourced data management. Inf. Syst., 62: 170–184.
Morishima, A.; Shinagawa, N.; Mitsuishi, T.; Aoki, H.; and
Fukusumi, S. 2012. CyLog/Crowd4U: A Declarative Plat-
form for Complex Data-Centric Crowdsourcing. Proceed-
ings of the VLDB Endowment, 5(12): 1918–1921.
Nguyen, A.; Wallace, B.; and Lease, M. 2015. Combining
Crowd and Expert Labels Using Decision Theoretic Active
Learning. Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing, 3: 120–129.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright,
C. L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray,
A.; Schulman, J.; Hilton, J.; Kelton, F.; Miller, L.; Simens,
M.; Askell, A.; Welinder, P.; Christiano, P.; Leike, J.; and
Lowe, R. 2022. Training Language Models to Follow In-
structions with Human Feedback. arxiv:2203.02155.
Prokoshyna, N.; Szlichta, J.; Chiang, F.; Miller, R. J.; and
Srivastava, D. 2015. Combining Quantitative and Logical
Data Cleaning. Proc. VLDB Endow., 9(4): 300–311.

Qin, C.; Zhang, A.; Zhang, Z.; Chen, J.; Yasunaga, M.; and
Yang, D. 2023. Is ChatGPT a General-Purpose Natural Lan-
guage Processing Task Solver? arXiv:2302.06476.
van Dis, E. A. M.; Bollen, J.; van Rooij, R.; Zuidema, W.;
and Bockting, C. L. 2023. ChatGPT: Five Priorities for Re-
search. Nature, 614(9): 224–226.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arxiv:2201.11903.
Wikipedia contributors. 2023a. Tokugawa Ieyasu —
Wikipedia, The Free Encyclopedia. [Online; accessed 16-
June-2023].
Wikipedia contributors. 2023b. Tokugawa Yoshinobu —
Wikipedia, The Free Encyclopedia. [Online; accessed 16-
June-2023].
Yamashita, Y.; Ito, H.; Wakabayashi, K.; Kobayashi, M.;
and Morishima, A. 2022. HAEM: Obtaining Higher-Quality
Classification Task Results with AI Workers. In ACM Web-
Sci 2022, 118–128. ACM.
Zhao, R.; Li, X.; Joty, S.; Qin, C.; and Bing, L.
2023. Verify-and-Edit: A Knowledge-Enhanced Chain-of-
Thought Framework. arxiv:2305.03268.

