Task Decomposition and Human Computation
in Graphics and Vision

Dan B Goldman
Adobe
dgoldman@adobe.com

ABSTRACT

We propose a few research challenges for crowdsourcing in
the computer vision and computer graphics domains, and
pose broader questions about the scope and capacity of crowd-
sourcing platforms to solve ill-defined large scale problems.
Specifically we consider how crowds can be employed for
task decomposition. We envision human computations that
are both self-assembling and self-debugging.

Author Keywords

task decomposition, human computation, crowdsourcing, com-

puter graphics, computer vision

ACM Classification Keywords

C.2.4 Computer systems organization: Computer-communication

networks—Distributed systems

General Terms
Algorithms, Design, Economics, Experimentation, Human
Factors, Management

INTRODUCTION

Because the human visual system is a central actor in both
computer graphics and computer vision, it is likely that crowd-
sourcing can play several important roles in these domains.
There are at least three such roles: First, crowds will be used
to validate synthesis models and approaches by large-scale
subjective evaluation. Second, crowds will provide massive
amounts of training data for machine learning algorithms.
And third, where current computer vision and graphics algo-
rithms fall short on their own, crowds will become a part of
the algorithm, supplanting the huge data capacity and brute
speed of current computers with higher cognition of (many)
human brains.

The first two of these roles are already coming to fruition,
by lowering barriers to larger scale studies and data acqui-
sition. However, the third role — getting humans in the loop
effectively — is almost completely unexplored in the research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2011, May 7-12, 2011, Vancouver, BC, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

Joel Brandt
Adobe
joel.brandt@adobe.com

community. This role presents several fundamental chal-
lenges:

1. Developing a means to reliably distinguish between tasks
that are more easily approached by developing new algo-
rithms or by turning to the crowd.

2. Figuring out how to easily extract those answers from hu-
mans. How do we break down the tasks? What are the
right rewards? What are the right distribution systems?

3. Figuring out how to integrate these tasks into larger sys-
tems. How do we make it fast enough that people could
use it in the real world? How do we control quality?

In this paper we propose possible directions for addressing
these three challenges. Using these directions as motiva-
tions, we then look more broadly at the possibility of using
crowdsourcing to solve large, ill-defined problems.

NEAR-TERM RESEARCH QUESTIONS

In crowdsourcing systems, can we rely on humans to faith-
fully report the behavior of their own visual system? In pre-
vious work, we used Mechanical Turk to determine the vi-
sual importance of differing regions in a pair of similar im-
ages [5]. Using an interactive “marquee” selection user in-
terface, we asked participants to select or highlight regions
that appeared significantly different between the images. But
we did not address whether this self-reported “cosaliency”
would match up with traditional measures of saliency, for
example, via gaze tracking. Although results in related ar-
eas [4] give us some confidence in this methodology, our
specific approach has not yet been cross-validated.

While our prior work looks only at static images, the poten-
tial impact of crowdsourced data is perhaps more interest-
ing for video. At present there are no large-scale datasets
of video annotated with measures of human visual saliency.
But if we could rely on some self-reporting mechanism to
find out what objects or regions attracted visual attention in
a video sequence, crowds could quickly provide a massive
database of video saliency for training machine learning al-
gorithms.

Note that the naive solution — just ask participants what they
were looking at in a video — is not particularly helpful. For
example, in a three-second clip of a person walking, a re-
spondent might look at the person’s hands, face, feet, and
the background. This is the data that computer vision re-

searchers would hope to capture. However, many respon-
dents might reasonably report “I was looking at the person.”
The challenge here is to design a stimulus in which the self-
reported result must be from the actual center of gaze at any
given moment.

Another immediate problem comes from a technical chal-
lenge that we face at Adobe, best explained by example:
A designer might use InDesign to produce a print maga-
zine layout for a specific page size. As mobile devices be-
come the preferred medium for magazine consumption, the
same magazine must now be redesigned for multiple mo-
bile screen resolutions, sizes, and aspect ratios. At present,
our design programs are largely built to accommodate fixed
layouts, and we have limited technology that can assist in
solving this problem for our customers: The cost of layout
design is essentially multiplied by the number of form fac-
tors.

While producing the first layout of a magazine page requires
great skill, does the task of adapting an existing layout to a
new form factor really require the same skills and degree of
effort? Certainly there is some taste involved in choosing
among alternatives, but the individual tasks involved are in
large part mechanical: Change the number of columns, scale
an image, remove a graphic, move it to a different page, etc.
Is it possible to break up an inherently visual task into small
pieces much like, e.g. Soylent [2] breaks up proofreading
tasks? Do design patterns like find/fix/verify extend to such
domains? How would they need to evolve to solve visual
problems?

Again, the naive solutions don’t apply. One drawback of
Soylent is that individual tasks are removed from their con-
text. This causes problems at a holistic level. For exam-
ple, parallel structure is not always preserved when splitting
up a proofreading task into many small-grained tasks. Such
problems might be even more acute for visual page layout,
which is even more holistic in nature, such that changing
an element on one side of the page might require changes
throughout the rest of it (or throughout a multi-page docu-
ment). On the other hand, it is easier to implement holistic
“verification” tasks for balance and consistency because they
require less time-consuming careful reading than text-based
tasks.

We make no claims that these are easy problems to solve, but
they may be tractable starting places for near future research.

LONGER-TERM RESEARCH QUESTIONS

The first author of this paper spent a previous career as a vi-
sual effects artist and supervisor. Among many other projects,
he was involved in the design and development of asset man-
agement systems, which came to encompass workflow man-
agement as well. When, for example, a change was made to
a 3D model, a notification was automatically routed to the
artist who painted it, in order to let them know it might need
to be retouched. Moreover, this workflow chain was config-
urable, so that if the sequence of steps to create an asset were
changed from one production to the next, a supervisor could

adjust the workflow easily.

As crowdsourcing has matured, we have begun to reflect
on how this sort of reconfigurable process automation could
be extended to virtual crowds. In particular, different indi-
viduals have different skill-sets and expertise. Some indi-
viduals may excel at organizing work into structured pro-
cesses, while others may work best at executing predeter-
mined processes. Thus far, research into crowdsourcing has
focused primarily on the latter category, but relatively little
effort has been expended on the former. In projects like Soy-
lent [2], the researchers themselves created the sequence of
steps for the crowds to execute. There are far fewer examples
in which the crowd itself participates in task decomposition
and process description. One notable exception is Foldlt [3],
an online game for solving protein structures. FoldlIt play-
ers can create “recipes” that can be used by other players
to solve puzzles. (See http://fold.it/portal/recipes?
sort=desc&order=Rating for example.)

Some additional research questions along these lines include:
Can all large problems be broken down into small ones?
This is a central tenet of software engineering, but does it
apply to people? Can crowds self-organize by skill-set? Can
crowds build hierarchical human programs, in which experts
provide high-level task breakdown and amateurs apply more
constrained labor?

In order to talk reasonably about these questions, one needs
to be very precise about his definition of crowdsourcing.
One really narrow definition is “getting something done by
posting really small tasks to Mechanical Turk, exactly as the
vanilla version works today”. Under that definition, the an-
swer to the above questions is almost certainly “no”. Of
course, a broader definition of crowdsourcing is “using money
to pay people to do stuff you don’t want to do”. Using that
definition, the answer to the above questions is “yes:” In this
definition, everything in the world that gets done today gets
done through crowdsourcing. Humans self-organize into groups
that can get things done. Some people break down big prob-
lems in to smaller ones. People with different skill sets
choose to do the things they’re better at. Eventually, ev-
ery large task gets broken down into a series of 5-minute-
long actions that a human can complete. As Adar has ob-
served [1], proving that “crowds can do what humans can
do” is not a great recipe for groundbreaking research.

But things get much more interesting if one has a very pre-
cise definition of your worker pool. For any set of con-
straints, one can then try to achieve a higher upper bound
of what pools with those constraints are capable of. In this
way, crowdsourcing research is a lot like both management
science and algorithms research. In the former, one might
ask “Can managers get remote employees to do X, where X
is something that co-located employes already do?” instead
of “Can employees do X?” In the latter, one might ask “can
I find the median of m numbers if I can only have n < m in
memory at any time and can only see each number once?”
instead of “can I find the median of m numbers?” (Shahaf
and Horvitz [6] have done some pioneering work along these

http://fold.it/portal/recipes?sort=desc&order=Rating
http://fold.it/portal/recipes?sort=desc&order=Rating

pngma\ Task (do not edit)
Build a house

EDIT BELOW THIS LINE ONLY

Steps:

1. Buy a newspaper. Done

1a. Find Real estate ads.Done

1b. Find Real estate ads for land sale.

1c. Visit the Real estate offices near the place where you intend to buy the plot.See if the
space is enough to build a house.whether location is good.

1d. Carry out an exhaustive research on the plots available to you.to see if there is water and
electricity is available

1e. Check records to make sure this is a legal property to sell. without out any hidden
agreements. Fraud of property owner.

1f. Double check with a second source.Good to get a second advice. Before going inte it.
1g. Discuss with friends and relatives and buy the land plot.If all documents are clear.

2. Contact an architect. Done

2a. Give him the briefing of the requirementsfor the construction of the house. Garden
landscape too

2b. BConvey him the approximate areas of the rooms you needA blueprint of each room . With
all requirements for a comfortable house.

1| 2a. Discuss the construction plans with architect.Done

2b. Review the construction plan provided by architect.Done
2c. Approve the plan.Done

3. Contact a land clearing company. Done
3a. Set appointment for land clearance. Done
3b. Contact an excavator. Done

4. Call a local concrete contractor. Done
4a.Set a date for foundation pouring. Done

6. Set roof trusses (framing for roof system).Done
6a. Order prefab roof trussesDone
6b. Mark cap plate of wall framing for roof trussesDone

Figure 1. Steps resulting from 9 Mechanical Turk users who were asked to break down the task “Build a house” into S5-minute tasks.

lines, by optimizing mixtures of both human and machine
computation based on their different characteristics.)

A PRELIMINARY EXPERIMENT

To dip our toe in the waters of self-assembling human com-
putations, we conducted a quick (and very unscientific) study
exploring the bounds of Mechanical Turk and its worker
pool.

To assess how users of Mechanical Turk would break down
tasks, we posted HITs to break down a complex task into
small pieces. Specifically, we began with three single large
tasks of varying specificity: “Write a story about a great man
whose pride brings about his downfall,” “Prepare a romantic
dinner,” and “Build a house.” (See Figure 1.) Participants
for all three tasks were asked to do the following:

Read through the list of steps below, and do the follow-
ing: If you see a step that you think would take less than
five minutes, write “DONE” at the end of the step (if it
does not already say “DONE”).

If you see a step that you think would take more than
five minutes, delete that step and replace it with two (or
more) smaller steps.

Participants were paid $0.10 if they rewrote one large step
as two or more smaller steps, a bonus of $0.05 for every ad-
ditional step broken down into smaller steps (up to $0.25),
and $0.01 for every step correctly marked as “DONE” (up
to $0.10). Participants worked simultaneously on the same
document using PiratePad (nttp: //piratepad.net). 38 turk-
ers participated in the tasks: 13 for the fiction-writing task,
6 for the romantic dinner, and 9 for the building task.

Although some participants were more careless than others
(e.g., marking very complex subtasks as DONE, or skip-
ping major steps like “choose what to eat for dinner”), the
process turned out to be somewhat self-correcting. For ex-
ample, later participants would occasionally “unmark” steps
marked as DONE, or add intermediate steps that were previ-
ously skipped.

None of the turkers used conditional statements or loops, not

even in the instructional style (e.g. “repeat steps 3 through
5 until X.”). Yet some subtasks were surprisingly specific
and technical, like this subtask from the house-building task:
“Mark cap plate of wall framing for roof trusses.” In this
case, one knowledgeable participant seemed to “gum up”
the process for later turkers, who could not assess the length
or difficulty of such a task. It seems likely that this could be
ameliorated with some type of feedback or “undo” to back
up to a more comprehensible set of instructions.

Although our experiment was too simplistic to draw any ac-
tionable conclusions, it suggests that even on Mechanical
Turk, where there is no threshold for participation at all, par-
ticipants were capable and willing to break down large tasks
into smaller ones. Given additional prompting, we expect
they could also be encouraged to employ conditional and
looping constructs necessary for flexible task breakdown.

CONCLUSION

To conclude, we envision a greatly expanded role for hu-
man computation in computer graphics and computer vision.
More broadly, we foresee that the current paradigm of man-
ually crafted human programming may quickly give way to
self-assembling human computation. Someday, the creator
of crowdsourcing tasks may be free to use broad guidelines
and allow the crowd to assist in providing the specificity
normally required for mechanical computation. To achieve
this, such systems must be self-debugging, including correc-
tive mechanisms to revise a program if the outcome does
not meet objectives. Designing and building methodologies
and platforms for these self-assembling and self-debugging
human computations will be a significant challenge for the
decades to come.

REFERENCES
1. Adar, E. Why I hate Mechanical Turk research, Nov.
2010. blog.cond.org/?p=28.

2. Bernstein, M., Little, G., Miller, R. C., Hartmann, B.,
Ackerman, M. S., Karger, D. R., Crowell, D., and
Panovich, K. Soylent: A word processor with a crowd
inside. In Proc. UIST (2010).

3. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J.,

http://piratepad.net
blog.cond.org/?p=28

Beenen, M., Leaver-Fay, A., Baker, D., Popovic, Z., and
Foldit players. Predicting protein structures with a
multiplayer online game. Nature 466 (2010), 756-760.

4. Heer, J., and Bostock, M. Crowdsourcing graphical
perception: using Mechanical Turk to assess
visualization design. In Proc. CHI (2010), 203-212.

5. Jacobs, D. E., Goldman, D. B., and Shechtman, E.
Cosaliency: Where people look when comparing
images. In Proc. UIST (2010).

6. Shahaf, D., and Horvitz, E. Generalized task markets for
human and machine computation. In Proc. AAAI (2010),
986-993.

BIOGRAPHIES

Dan Goldman is a senior research scientist at Adobe Systems
in Seattle, working at the intersection of computer graphics,
computer vision, and human-computer interaction. Dan’s
main area of interest is developing technologies to simplify
the manipulation of digital media, especially digital video.
He pursued his graduate studies at the University of Wash-
ington from 2002 to 2007, advised by David Salesin, Brian
Curless and Steve Seitz. His thesis described novel visu-
alization and interaction techniques for video manipulation.
Additional research interests include computational photog-
raphy, rendering algorithms, and geometry acquisition. He
received his Bachelors and Masters from Stanford Univer-
sity, and spent 12 years as a computer graphics artist, en-
gineer and supervisor at Industrial Light and Magic before
pursuing his current research career. Dan is a member of the
Visual Effects Society and ACM Siggraph.

Joel Brandt is a research scientist at Adobe Systems, focus-
ing on human-computer interaction. His current research
interests include software development, crowdsourcing, and
digital books. Joel completed his Ph.D. at Stanford Univer-
sity in 2010, and was a member of Stanford’s HCI Group,
advised by Scott Klemmer. His thesis work explores the
role that information resources play during software devel-
opment. As part of this work, he built tools that make it
easier for programmers to locate and use instructive example
code. This software is used by thousands of programmers on
a daily basis. He received a BS with majors in computer sci-
ence and mathematics and an MS in computer science from
Washington University in St. Louis.

	Introduction
	Near-term research questions
	Longer-term research questions
	A preliminary experiment
	Conclusion
	REFERENCES
	Biographies

