
The Complexity of Crowdsourcing:
Theoretical Problems in Human Computation

Anand Kulkarni
Department of Industrial Engineering and

Operations Research
4141 Etcheverry Hall, University of California,

Berkeley, 94720-1777
anandk@berkeley.edu

ABSTRACT
What does theoretical computer science have to say about
human computation? We identify three problems at the
intersection of crowdsourcing, operations research, and
theoretical computer science whose solution would have a
major impact on the design, evaluation, and construction of
real crowdsourcing systems. In some cases, these problems
can let us sidestep apparently difficult HCI challenges by
making appropriate choices at the algorithmic level. In
other contexts, theoretical tools provide a formal basis for
evaluating the performance of algorithms and classifying
the difficulty of tasks in crowdsourcing. Our problems are
illustrated through two recent projects. The first,
Turkomatic, is an attempt to construct a “universal”
algorithm for generating workflows on microtask
crowdsourcing platforms. The second, MobileWorks, is a
new crowdsourcing engine designed from the bottom up to
provide appropriate abstractions between the theoretical
elements of human computation systems and
interface/design questions. It is hoped that this analysis can
spur the development of theoretical frameworks for
understanding algorithms involving human computation.

Author Keywords
Crowdsourcing, foundations, algorithms, complexity

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Theory, Algorithms, Human Factors

INTRODUCTION
Jeanette Wing, director of the NSF computing division, has
recently suggested [1] that the development of theoretical
computer science tools for systems involving human
computation is one of the five most important questions
facing computing today. These tools have had a profound
impact in the development of computer science, but their

development is overdue in crowdsourcing: in both
conventional and quantum computing, formal models of
computation and algorithms preceded the development of
reliably working systems by decades. In human computing,
experimental progress in building crowdsourcing systems
has dramatically outpaced the development of theoretical
models. How can human computation benefit from the set
of tools theory offers?

As an example of a benefit theoretical frameworks can
bring to crowdsourcing, consider that computer science has
long enjoyed established models of computation for
evaluating and comparing the performance of algorithms
independent of the specifics of their implementation.
However, no such abstract models for comparison exist in
human computation. For example, how should we compare
techniques for solving a problem using Games with a
Purpose [2] against ones powered by Amazon’s Mechanical
Turk [3]? Current analyses typically report on measures that
are heavily influenced by the underlying microtask
platform, implementation and user interface (monetary cost,
user engagement, conflating platform-specific features of
success with independent, generalizable advantages of the
algorithm or approach used. As the number of platforms
available for crowdsourcing increases, this problem will
only get worse.

One solution is to build a model of computation involving
humans. A recent model proposed by Shahaf and Amir
suggests extension of the Turing Machine model to include
calls to a human computation engine (ie, an oracle) [4].
Under this model, we can compare the cost of two human
computation algorithms as a weighted sum of the number of
operations and the number of yes-or-no oracle queries
required. We argue that this is the appropriate level of
abstraction in considering algorithms that use human
computation. First, it completely separates error control,
user rewards, and user interface questions in crowdsourcing
evaluations from algorithm design questions. Second, it
allows us to directly quantify the cost of systems using
human computation as the number of queries made to an
oracle, irrespective of the specific underlying ways that
humans are being rewarded or recruited into a system.
Third, it lets us give an objective theoretical comparison
between algorithms using humans and the best known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

algorithms that do not use crowds. This last advantage may
even mean that problems solved using human computation
may have a role in the existing hierarchies of computational
complexity, much as randomized and quantum complexity
classes have been added to these hierarchies.
We mention this extension of the Turing Machine model as
a first example of a potentially rich intersection between CS
theorists and scientists in HCI in developing a formal
theory of crowdsourcing. In the remainder of the paper, we
discuss three problems in human computation that the
author has pursued that emerge from theoretical computer
science and operations research: automatic workflow
design, hierarchical system design, and models for real-time
computation.

TURKOMATIC: ALGORITHMS FOR AUTOMATIC TASK
DECOMPOSITION AND WORKFLOW DESIGN
A central question of interest in human computation is the
workflow design or task decomposition problem.

Workflow Design: Given an arbitrary high-level task, how
can we break it down into a workflow of tasks that can be
fed into a human computation platform?

Processing complex tasks on crowdsourcing platforms like
Mechanical Turk currently requires substantial up-front
investment by designers into task decomposition and
workflow design. Historically, the problem of workflow
design has been approached in an ad hoc manner, with
individual workflows designed by system creators at
substantial up-front cost. Treating this problem as a
computational one, it is reasonable to ask whether we can
design algorithms to automatically construct workflows for
tasks given as input.

In joint work with Matthew Can and Bjoern Hartmann, the
author has proposed a new method for automating task and
workflow design for high-level, complex tasks [5]. We
suggested problem of high-level task design could be partly
automated by assigning the responsibility of designing
workflows to workers themselves – a recursive algorithm
for workflow design.

This algorithm was implemented on Mechanical Turk. This
system, Turkomatic, generates Human Intelligence Tasks
(HITs) asking Mechanical Turk workers (Turkers) to
decompose complex tasks into simpler ones, solve these
tasks in parallel, and combine the results into a coherent
solution.

Turkomatic’s interface accepts a description of a general
task from the end user posed in natural language and posts a
HIT asking workers to break the task down into a set of
logical subtasks. These subtasks are automatically reposted
to Mechanical Turk, where workers can choose to simplify
them further — a recursive subdivision — or to solve them
directly. Once all subtasks are completed, HITs are posted
asking workers to combine subtasks’ solutions into a
coherent whole, which is returned to the requester.

Our view is that this approach can be tremendously
powerful in extending the kinds of problems solvable via
human computation. Because designing effective tasks on
crowdsourcing systems like Mechanical Turk is currently a
black art, it is unknown how to convert the kind of open-
ended high-level tasks people and organizations do every
day ("write a paper about ____; build a webpage containing
____; build software that does ___") into tasks that can be
solved effectively on crowdsourcing systems.
However, in recent experiments, we have used Turkomatic
algorithm to automatically decompose complex, multistage
tasks like essay-writing into small pieces (Fig 1).
Implemented effectively, Turkomatic can serve as a kind of
universal solver for tasks on Mechanical Turk, although it is

plainly less efficient in the number of humans used than
workflows tailored by an expert. Our continued
experiments with Turkomatic and understanding how it
fails will shed light on the formal complexity of the
workflow design problem.

MOBILEWORKS: MAKING HUMAN COMPUTATION
CONSISTENT WITH INCONSISTENT WORKERS
The model of humans as infallible oracles suggested by the
human-assisted Turing Machine model is in dramatic
contrast to the way humans actually behave on

Figure 1: Turkomatic's recursive algorithm automatically
generates crowdsourcing workflows for complex, high-level
tasks. Here, the result of giving Turkomatic the task, "Write a
five-paragraph essay."

!

crowdsourcing platforms – they are unreliable, inconsistent,
and often wrong. This is not as problematic as it first
appears; after all, in conventional computing, hardware
errors have not been eliminated but tools for designing
software no longer need to concern themselves with these
issues. In the author’s view, human computation must move
in a similar direction to enable more efficient programming.
In particular, this involves resolving three problems:

Consistency: Given the same inputs, how can we get the
same output from a microtask platform, independently of
the time of day?
Speed: How can we get results from a microtask platform
with a predictable speed?
Accuracy: How can we predict the accuracy of a query
given to a microtask platform in advance?

These three questions are equally amenable to solution
through improved interface design or alternative
algorithmic choices. Consider, for instance, the accuracy
problem. Redundancy and majority voting, by far the most
common methods in use today, are only the simplest
techniques that have been developed in literature on social
choice and voting algorithms. To the extent that more
sophisticated tools are unknown in the crowdsourcing
community, it will be important to survey these techniques
and identify which are best suited for particular classes of
problems.

The difficulty of the accuracy question is illustrated in
MobileWorks, an ongoing project by the author, Philip
Gutheim, Prayag Narula, and Dave Rolnitzsky.
MobileWorks is a social enterprise and crowdsourcing
platform letting low-income workers in the developing
world participate in the crowdsourcing economy through
their mobile phones. Our worker pool consists of mobile-
phone owners in developing nations living on less than $2 a
day. The MobileWorks interface accepts handwritten
documents, divides them into components, and sends each
piece to workers to be solved as OCR; they are paid higher-
than-typical wages for the task in an effort to lift them out
of poverty. Because the project’s objectives are social, the
worker pool is unusually unreliable – many come from low-
education backgrounds and historically marginalized
groups.

As an effort to provide employment to a semiliterate
population, MobileWorks needs to reconcile the inherent
unreliability of its worker pool with the need to provide
efficient solutions. Because OCR work operates on
extremely slim price margins, the problem of eliminating
worker error cannot be addressed through redundancy in the
worker pool alone. We chose to balance a small number of
expensive, redundant checks carried out within the worker
pool with a combination of periodic qualifications and
reputation tracking, as well as the ability to occasionally
send work to a cheaper alternative platform entirely for

error control (in this case, Mechanical Turk). This
comprehensive all-of-the-above approaches works
practically for getting crowdsourcing systems to function
reliably. However, as is common for these strategies, it is
not obvious how to most efficiently combine these
techniques to minimize costs.

As a result, MobileWorks represents an instance of a
project where additional theoretical modeling and cost
optimization can make a substantial difference in achieving
the platform’s objectives.

MODELS FOR REAL-TIME HUMAN
COMPUTATION
There are presently few practical systems that make use of
real-time human computation. Part of this reason is
historical: because they were intended for large-scale data
processing tasks, microtask marketplaces like Mechanical
Turk are largely designed for asynchronous participation.

In the past six months we have seen the emergence of
applications that make use of online or nearly-real-time
responses, such as VizWiz [6] and Soylent [7]. These are a
compelling class of applications with strong potential for
bringing the benefits of crowdsourcing out of cloud data-
processing and into end-user applications. Of particular
interest to the author is the potential for improving robotic
decision-making and human-robot communication, and
look forward to building robots whose intelligence can be
extended in real time by contributions from the crowd.

However, before these systems can be built, we need to
determine ways to make systems using human computation
behave quickly. In joint work with Siamak Faridani and
Kuang Chen, the author is designing models to represent
the time required to produce solutions to tasks posted on
microtask markets. Our approach is based on infinite-server
queuing models in queuing theory, which represent the
relationship between arrival of users (servers) at
crowdsourcing websites and the arrival and processing of
jobs.

As part of this work, we are attempting to build a predictive
system that can accept parameters describing any
crowdsourcing platform and particular set of problem
requirements, and determine automatically when and how
task should be posted, including pricing and task size, to
make sure that the task is completed by a certain time with
a theoretically derived probability. This presents an
alternative approach to solutions such as QuikTurKit [6],
which use novel worker interaction techniques to obtain
faster response times. Our earliest predictions from a purely
theoretical analysis of our model are summarized below.

There exist critical lower- and upper- density for real-time
responses. Adding additional workers to a microtask
platform decreases response time for a task, but only until a
critical threshold of workers is reached; beyond this
number, no additional workers joining the system increase
its ability to process a task faster.

There exists a critical reward threshold beyond which
additional payments do not increase completion speed in a
microtask market. Increasing rewards (payments on
Mechanical Turk, or points in a game) improves completion
speed, but only until particular thresholds are reached – our
model shows that additional rewards beyond a certain point
will not decrease the time required for a task to be
completed.

CONCLUSION
Our vision for human computation is to see the field
develop the kind of rigorous foundation and abstractions
that exist in classical autonomous computing, especially
models and techniques will enable researchers to better
build and reason about these systems.

Human computation offers a rich vein for CS theorists to
answer new, practical questions and come up with
alternative, algorithmic-driven solutions to problems that
have so far been addressed as interface challenges. We do
not mean to suggest that the list of theoretical questions we
present is exhaustive – it is simply the beginning of a
potentially rich examination of problems at the intersection
of theory and human computation. The resolution of each
of these issues can begin to form the basis of a theory of
human computation.

ACKNOWLEDGMENTS
Thanks to the collaborators on the projects discussed for
many useful discussions: Bjoern Hartmann and Matthew
Can on Turkomatic, Siamak Faridani and Kuang Chen on
real-time modeling, Prayag Naurla, Philipp Gutheim, and
Dave Rolnitzky on MobileWorks, and Steven Dow and
Bjoern Hartmann in general.

Author Biography
Anand Kulkarni is a 5th-year PhD student in Industrial
Engineering and Operations Research at the University of
California, Berkeley and an NSF Graduate Research
Fellow. Although his training and background are in
theoretical computer science, mathematics, and algorithms,

he is interested in how ideas from these fields can inform
and extend practices in crowdsourcing.

Anand co-organizes Berkeley’s graduate research seminar
on crowdsourcing, and his research concerns applications at
the intersection of crowdsourcing and theory,
crowdsourcing and robotics, and crowdsourcing and
international development. He holds Bachelor’s degrees in
mathematics and physics and a Master’s degree in
operations research at UC Berkeley.

REFERENCES
1. Wing, J. Five deep questions in computing. Comm.

ACM, Vol. 51, No. 1. (2008), pp. 58-60
2. von Anh, L, and Dabbish, L. Designing Games with a

Purpose. Communications of the ACM 51, 8 (Aug.
2008), p. 58-67.

3. Amazon’s Mechanical Turk. http://www.mturk.com
4. Shahaf, D., and Amir, E.. Towards a theory of AI-

completeness. Proceedings of Commonsense 2007, 8th
International Symposium on Logical Formalizations of
Commonsense Reasoning.

5. Kulkarni, A., Can, M., Hartmann, B. Turkomatic:
Automatic Recursive Task and Workflow Design for
Mechanical Turk. Submitted, CHI2011 WIP.

6. Bigham, J., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R.C., Miller, R., Tatrowicz, A., White, B.,
White, S., and Yeh, T.. VizWiz: Nearly Real-time
Answers to Visual Questions (2010). In Proceedings of
the ACM Symposium on User Interface Software and
Technology (UIST 2010).

7. M. Bernstein, G. Little, R.C. Miller, B. Hartmann, M. S.
Ackerman, D. R. Karger, D. Crowell, K. Panovich,
Soylent: A Word Processor with a Crowd Inside,
Proceedings of UIST 2010.

