

Human OCR: Insights from a Complex
Human Computation Process

Greg Little
MIT CSAIL

32 Vassar St. Cambridge, MA
 glittle@gmail.com

Yu-An Sun
Xerox Research Center Webster
800 Phillips Road, Webster, NY

YuAn.Sun@xerox.com

ABSTRACT
Human computation is a growing research field. It holds the
promise of humans and computers working seamlessly
together to implement powerful systems, but this requires in
depth knowledge about the communication barrier between
man and machine. In this paper, we discuss the creation of a
relatively complicated human computation process. We test
our process on a set of real world data, and discuss the
results. We also extract general human computation
principles from this process, including the general merits of
independent agreement, as well as the risks of piecework,
where workers see only a subset of a larger task.

Author Keywords
human computation, Mechanical Turk, transcription

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

INTRODUCTION
In a human-computer interaction environment, we usually
think of the human as being in charge, and the interface as
trying to serve their needs for achieving a goal. However, in
human computation situations, a computer algorithm is in
charge, and it uses interfaces to communicate to humans
what they should do. The humans are acting as component
steps in a process. In this paper we present a relatively
complicated human computation process for performing
human OCR on hand-completed forms, and discuss design
issues we encountered while building and evaluating the
system.

After a discussion of related work, this paper will describe
our problem, our solution, and an experiment we ran on our

solution. Then we spend the rest of the paper discussing the
results, including sharing some high level insights for future
research topics that came from this work.

RELATED WORK
This work falls into the broad category of human
computation. Quinn et al. [7] give a good overview of
human computation systems. This work is particularly
interested in task design, and how human workers react to
different tasks. These issues are explored in [3], [6] and [8].
This work is also an example of a relatively complicated
human computation system, such as those explored in [2]
and [4], using the TurKit toolkit [5].

PROBLEM
We want to perform OCR on handwritten forms. In
particular, we want to take a set of scanned forms, and
generate a spreadsheet of the data on the forms. The output
spreadsheet should have a row for each scanned form, and a
column for each field of data (e.g. a "first name" column,
and a "zip code" column). We would also like to keep data
private by not revealing too much to any of our workers.

SOLUTION
Our basic approach involves showing human workers small
cropped windows of each form, each containing a small
chunk of information that should be useless on its own (e.g.
the word "HIV", without seeing who has it). Since our
approach involves showing people cropped views of a
form, we will also need some way to discover the location
and size of each view. To support this task, we add an
additional input to the system, which is a blank template
form. Workers may view the entire template form without
revealing anyone’s private information. The template form
is used in the first phase of a three phase process:

Phase 1: Drawing Rectangles
The first phase asks people to draw rectangles on the blank
template form where writing would appear. Workers are
also shown some positive and negative example rectangles
over an example form:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$5.00.

Because the form may have many fields, we tell workers
“you don't have to do it all, just help”. We only keep
rectangles that multiple people draw in roughly the same
place, and we show workers all the rectangles that previous
workers have agreed upon. These rectangles act as extra
examples of what to do, and also encourage workers to
draw rectangles elsewhere on the form, so that everyone
doesn't draw rectangles for the top few fields. In case all the
rectangles are already drawn, we include a submit button
labeled "All the fields are covered".

We pay 5 cents for each worker, and keep asking workers
to add more rectangles for a set number of iterations (10 in
our case). One could also imagine a stopping condition
based on the “All the fields are covered” button.

Phase 2: Labeling Rectangles
The first phase provides a set of rectangles covering the
form. These rectangles mark all of the chunks of
information that will appear in the columns of the final
spreadsheet. What we need now is a heading for each
column, i.e., a label for each rectangle. The interface for
this task is fairly straightforward: we show a worker the
form with a single rectangle highlighted on it. Then we ask
for a label of the given rectangle. We also show this
example:

We iteratively ask for labels (1 cent each) until two workers
submit the same label. We were concerned that this might
take too long, since the space of possible labels might be
quite large given different abbreviations for a long label,
and different ways to capitalize it. To foster convergence,
we show each worker all the labels that previous workers
have provided, so that they can simply copy one of these if
it seems good enough.

Phase 3: Human OCR
The final phase of the process is the most straightforward.
For each rectangle, on each scanned form, we show
workers a cropped view of that form where the rectangle is,
and prompt them to write what is written there:

We also show people the label for the rectangle (e.g. “Zip
Code”), so that they have some context to help them
decipher the handwriting (e.g. these must be five numbers).
We also expand the rectangle a little bit, in case people
write outside the lines. Note that the instruction: “just write
‘check’ for check marks” was added based on pilot

experiments were workers were unsure what to write when
they saw a check mark.

For this task, we do not show workers the results from
previous workers, since we want independent agreement
about the correct answer. Hence, we keep asking for more
submissions (1 cent each) until two workers submit exactly
the same response.

EXPERIMENT
We iteratively developed the solution above by testing each
phase on a set of artificially created data, including real
handwriting that we procured by hiring MTurk workers to
print a fake form, fill it out with fake information, and scan
it (50 cents each).

We tested the final process on a set of real forms with real
data. We started with 30 scanned medical insurance claim
forms, along with a blank template form. First, we removed
all identifying information, like names and telephone
numbers (we were not yet ready to test the privacy aspect of
the system). Then, we cropped the forms, to remove form
elements that our system was not prepared to deal with. For
instance, the form had a list where users could enter one or
more items, and this did not fit our key-value spreadsheet
model for the data. (This form element would be like a cell
in a spreadsheet containing a nested spreadsheet, which we
will leave to future work.) Finally, we manually aligned all
the scanned forms with the template form. Aligning the
forms was necessary so that the rectangle coordinates found
in Phase 1 would be applicable in Phase 3. As future work,
we plan to automate the alignment process with image
processing.

RESULTS AND DISCUSSION
It is easiest to gauge the performance of the process by
looking at the results for each phase in turn.

Phase 1: Drawing Rectangles
Workers agreed on rectangles for nearly every form
element that we were interested in (61/64, or 95%), and we
had one duplicate rectangle:

The missing form elements come from these two fields:

We did not anticipate the wide horizontal variance that
workers submitted for these form elements, which threw off
our fuzzy rectangle matching algorithm, which was based
on a fixed tolerance of 10% of the rectangle’s width. This
tolerance also allowed for a duplicate rectangle (note the
dark red inner rectangle):

The extra rectangle actually exhibits two problems. First,
we hoped that the algorithm would consider these
rectangles to be the same, since they indicate the same form
element. Second, the larger rectangle revealed a bug in our
system where a single worker drew two overlapping
rectangles, and the system counted this is inter-worker
agreement.

Phase 2: Labeling Rectangles
Most of the labels acquired in Phase 2 were correct, and
unambiguous (41/62 or 66%), though they were not always
consistent, for instance:

 Yes (Employment current employer or previous)
 employment(current or previous)-no

The next 31% (19/62) were ambiguous, meaning that the
same label could apply equally well to more than one form
element. For instance, “YES”, since four checkboxes had
this label. Note that our instructions simply asked workers
to label the rectangle, so this is not a case of cheating, but
rather underspecified instructions. It is reassuring, however,
than many workers provided unique labels anyway.

The final 3 labels were wrong. Two were instances of a
checkbox in the middle of a long sequence of checkbox-
label-checkbox-label:

In this case, workers sometimes gave the left label when
they should have given the right label. It is possible to
determine which label is correct only by looking at the
checkboxes on the extreme ends. Note that this is a
symptom of poor form design, suggesting that our process
may used to detect usability errors of this sort.

The final mistake came labeling the rectangle below:

We can infer from context that the label is a type of
biological relationship, and the first letter is “s”, but the
scan quality is poor. The incorrect winning label was
“SON”, whereas one worker suggested the better label
“Patient Relationship to Insured – Self”.

Phase 3: Human OCR
Overall the OCR process seems to work extremely well,
although we don’t have the ground truth for these forms, so

all we really know is that MTurk workers agree with the
author’s own guesses about people’s handwriting. We do
know that workers made at least one mistake:

We know these dates indicate the birth-year of a single
individual, so they should be the same, however, workers
converged on “1957” for the first date, and “1952” for the
second. However, this seems understandable, since the “2”
in the first date has many qualities of a “7”.

Note that we included a special instruction to deal with
checkboxes: “just write ‘check’ for check marks.” Out of
261 instances of a check in a box, workers converged on the
guess “check” 229 times (88%). Only four times did
workers converge on “x” as the answer, where the other 28
times people agreed on a value like “M”, which was the
label of the checkbox.

We encountered another interesting problem on forms:
people using words like "same" to refer to information on
other parts of the form:

This may be difficult to overcome while preserving privacy,
but maybe not. If people can see a blank form, they may be
able to provide a useful guess about which other form
element the "same" is probably referring to and recommend
that another worker look at both fields together.

DISCUSSION AND FUTURE WORK
Our work generated insights that should be applicable in
broader contexts.

Independent Agreement
Bernstein et al. [2] cite independent agreement – multiple
workers generating the same response, independently – as a
good sign that a response is correct. Our results corroborate
this insight. For instance, in Phase 1, we only keep
rectangles that multiple workers draw in the same place,
and these tend to be correct. In fact, in one pilot experiment,
we had multiple workers draw all the rectangles for a form,
without seeing any other worker's submissions, and while
no single worker got them all correct, the set of
independently agreed upon rectangles was correct.

Note that this approach has limitations. The chance of
obtaining independent agreement decreases as a question
becomes more difficult or has too many possible correct
answers. Hence, researching crowdsourcing quality of
service is still an important direction for us.

Dynamic Partitioning
Drawing many rectangles on a form presents an interesting
challenge: how do we partition the task so that no worker
needs to do all the work? The problem is that the form is
difficult to break into pieces that can be processed

independently. For instance, showing people a cropped
window of the form might result in fields straddling the
edge of that window. Our solution is dynamic partitioning,
where we show each worker what has been done so far, so
that they can decide for themselves where to make the next
contribution. This approach may generalize to other
problems which are difficult to break into clearly defined
pieces. Note that this approach is parallel in the sense that
each part of the problem is processed by a subset of the
workers. However, it is not parallel in the sense of having
workers work simultaneously, since we must wait for a
worker to complete their work before showing their results
to the next worker.

Risk of Piecework
When we divide a task into small pieces, there is a risk that
workers may make mistakes which could be avoided with
global knowledge about other pieces. For instance, in Phase
2, workers labeling a rectangle do not know what labels are
being given to other rectangles, so they have no way to
establish a consistent naming convention. (Contrast this
with Phase 1, where rectangles from previous workers act
as examples to subsequent workers). Also, in Phase 3, the
example of the word "same" appearing in a box shows how
obscuring the rest of the form prevents the worker from
locating the intended value for the given field.

Human Exception Handling
When humans encounter tasks for which the instructions
are poorly specified or ambiguous, they often try to make a
good faith effort to solve the problem. For instance, in
Phase 2, labelers would often write things like "Other
Accident? -- yes", instead of just "Yes", even though the
instructions did not say that the label needed to be unique.
Also, in Phase 3, some check marks were OCRed as the
label next to the checkbox (e.g. “M”), which is an option
we had considered writing into the instruction. Of course, in
this case, they were disobeying our instruction to write
"check" when they see a check. However, it is interesting
that these workers would have done something reasonable
even without that instruction.

These findings suggest that it may be possible to write
better, more succinct instructions, if we have a better
understanding of how humans will naturally handle
underspecified instructions. It also suggests an interesting
direction for future research: can we design tasks that take
advantage of human exception handling, perhaps providing

an interface for people to notify the system when
instructions are ambiguous?

Greg's Bio
Greg has a bachelor degree from Arizona State University
and a masters from MIT. He is currently finishing his PhD
thesis at MIT on algorithmic human computation. He is
interested in orchestrating the efforts of many humans to
solve hard design and creative problem solving tasks.

Yu-An's Bio
Yu-An received a doctoral degree in computer science from
George Washington University. She is an area manager at
Xerox Research Center Webster. She also holds a Master in
Business Administration degree from National Central
University in Taiwan.

ACKNOWLEDGMENTS
We would like to acknowledge all those who aided directly
or indirectly in this work, including Naveen Sharma, Rob
Miller, Bo Begole, and the Xerox Research Center Webster.

REFERENCES
1. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., and

Blum, M. reCAPTCHA: Human-Based Character Recognition
via Web Security Measures. Science, September 12, 2008. pp
1465-1468.

2. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B.,
Ackerman, M.S., Karger, D.R., Crowell, D., Panovich, K.
Soylent: A Word Processor with a Crowd Inside. UIST '10,
ACM Press (2010).

3. Kittur, A., Chi, E.H., and Suh, B. Crowdsourcing user studies
with Mechanical Turk. CHI '08, ACM Press (2008).

4. Little, G., Chilton, L., Goldman, M., and Miller, R.C.
Exploring Iterative and Parallel Human Computation
Processes. ACM SIGKDD Workshop on Human Computation,
ACM Press (2010).

5. Little, G., Chilton, L., Goldman, M., and Miller, R.C. TurKit:
Human Computation Algorithms on Mechanical Turk. UIST
'10, ACM Press (2010).

6. Mason, W. and Watts, D. Financial Incentives and the
“Performance of Crowds”. ACM SIGKDD Workshop on
Human Computation, ACM Press (2009).

7. Quinn, A.J. and Bederson, B.B. A Taxonomy of Distributed
Human Computation.

8. Snow, R., O'Connor, B., Jurafsky, D., and Ng, A.Y. Cheap and
fast—but is it good?: evaluating non-expert annotations for
natural language tasks. ACL '08, (2008).

The columns on the last page should be of approximately equal length.

