
 

Human OCR: Insights from a Complex                        
Human Computation Process 

Greg Little 
MIT CSAIL 

32 Vassar St. Cambridge, MA 
 glittle@gmail.com 

 

Yu-An Sun 
Xerox Research Center Webster 
800 Phillips Road, Webster, NY 

YuAn.Sun@xerox.com 
 

 
ABSTRACT 
Human computation is a growing research field. It holds the 
promise of humans and computers working seamlessly 
together to implement powerful systems, but this requires in 
depth knowledge about the communication barrier between 
man and machine. In this paper, we discuss the creation of a 
relatively complicated human computation process. We test 
our process on a set of real world data, and discuss the 
results. We also extract general human computation 
principles from this process, including the general merits of 
independent agreement, as well as the risks of piecework, 
where workers see only a subset of a larger task. 
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INTRODUCTION 
In a human-computer interaction environment, we usually 
think of the human as being in charge, and the interface as 
trying to serve their needs for achieving a goal. However, in 
human computation situations, a computer algorithm is in 
charge, and it uses interfaces to communicate to humans 
what they should do. The humans are acting as component 
steps in a process. In this paper we present a relatively 
complicated human computation process for performing 
human OCR on hand-completed forms, and discuss design 
issues we encountered while building and evaluating the 
system. 

After a discussion of related work, this paper will describe 
our problem, our solution, and an experiment we ran on our 

solution. Then we spend the rest of the paper discussing the 
results, including sharing some high level insights for future 
research topics that came from this work. 

RELATED WORK 
This work falls into the broad category of human 
computation. Quinn et al. [7] give a good overview of 
human computation systems. This work is particularly 
interested in task design, and how human workers react to 
different tasks. These issues are explored in [3], [6] and [8]. 
This work is also an example of a relatively complicated 
human computation system, such as those explored in [2] 
and [4], using the TurKit toolkit [5]. 

PROBLEM 
We want to perform OCR on handwritten forms. In 
particular, we want to take a set of scanned forms, and 
generate a spreadsheet of the data on the forms. The output 
spreadsheet should have a row for each scanned form, and a 
column for each field of data (e.g. a "first name" column, 
and a "zip code" column). We would also like to keep data 
private by not revealing too much to any of our workers. 

SOLUTION 
Our basic approach involves showing human workers small 
cropped windows of each form, each containing a small 
chunk of information that should be useless on its own (e.g. 
the word "HIV", without seeing who has it). Since our 
approach involves showing people cropped views of a 
form, we will also need some way to discover the location 
and size of each view. To support this task, we add an 
additional input to the system, which is a blank template 
form. Workers may view the entire template form without 
revealing anyone’s private information. The template form 
is used in the first phase of a three phase process:   

Phase 1: Drawing Rectangles 
The first phase asks people to draw rectangles on the blank 
template form where writing would appear. Workers are 
also shown some positive and negative example rectangles 
over an example form: 
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Because the form may have many fields, we tell workers 
“you don't have to do it all, just help”. We only keep 
rectangles that multiple people draw in roughly the same 
place, and we show workers all the rectangles that previous 
workers have agreed upon. These rectangles act as extra 
examples of what to do, and also encourage workers to 
draw rectangles elsewhere on the form, so that everyone 
doesn't draw rectangles for the top few fields. In case all the 
rectangles are already drawn, we include a submit button 
labeled "All the fields are covered". 

We pay 5 cents for each worker, and keep asking workers 
to add more rectangles for a set number of iterations (10 in 
our case). One could also imagine a stopping condition 
based on the “All the fields are covered” button. 

Phase 2: Labeling Rectangles 
The first phase provides a set of rectangles covering the 
form. These rectangles mark all of the chunks of 
information that will appear in the columns of the final 
spreadsheet. What we need now is a heading for each 
column, i.e., a label for each rectangle. The interface for 
this task is fairly straightforward: we show a worker the 
form with a single rectangle highlighted on it. Then we ask 
for a label of the given rectangle. We also show this 
example: 

 

We iteratively ask for labels (1 cent each) until two workers 
submit the same label. We were concerned that this might 
take too long, since the space of possible labels might be 
quite large given different abbreviations for a long label, 
and different ways to capitalize it. To foster convergence, 
we show each worker all the labels that previous workers 
have provided, so that they can simply copy one of these if 
it seems good enough. 

Phase 3: Human OCR 
The final phase of the process is the most straightforward. 
For each rectangle, on each scanned form, we show 
workers a cropped view of that form where the rectangle is, 
and prompt them to write what is written there: 

 

We also show people the label for the rectangle (e.g. “Zip 
Code”), so that they have some context to help them 
decipher the handwriting (e.g. these must be five numbers). 
We also expand the rectangle a little bit, in case people 
write outside the lines. Note that the instruction: “just write 
‘check’ for check marks” was added based on pilot 

experiments were workers were unsure what to write when 
they saw a check mark. 

For this task, we do not show workers the results from 
previous workers, since we want independent agreement 
about the correct answer. Hence, we keep asking for more 
submissions (1 cent each) until two workers submit exactly 
the same response. 

EXPERIMENT 
We iteratively developed the solution above by testing each 
phase on a set of artificially created data, including real 
handwriting that we procured by hiring MTurk workers to 
print a fake form, fill it out with fake information, and scan 
it (50 cents each). 

We tested the final process on a set of real forms with real 
data. We started with 30 scanned medical insurance claim 
forms, along with a blank template form. First, we removed 
all identifying information, like names and telephone 
numbers (we were not yet ready to test the privacy aspect of 
the system). Then, we cropped the forms, to remove form 
elements that our system was not prepared to deal with. For 
instance, the form had a list where users could enter one or 
more items, and this did not fit our key-value spreadsheet 
model for the data. (This form element would be like a cell 
in a spreadsheet containing a nested spreadsheet, which we 
will leave to future work.) Finally, we manually aligned all 
the scanned forms with the template form. Aligning the 
forms was necessary so that the rectangle coordinates found 
in Phase 1 would be applicable in Phase 3. As future work, 
we plan to automate the alignment process with image 
processing. 

RESULTS AND DISCUSSION 
It is easiest to gauge the performance of the process by 
looking at the results for each phase in turn. 

Phase 1: Drawing Rectangles 
Workers agreed on rectangles for nearly every form 
element that we were interested in (61/64, or 95%), and we 
had one duplicate rectangle: 

 

 

The missing form elements come from these two fields: 

 



 

We did not anticipate the wide horizontal variance that 
workers submitted for these form elements, which threw off 
our fuzzy rectangle matching algorithm, which was based 
on a fixed tolerance of 10% of the rectangle’s width. This 
tolerance also allowed for a duplicate rectangle (note the 
dark red inner rectangle): 

 

The extra rectangle actually exhibits two problems. First, 
we hoped that the algorithm would consider these 
rectangles to be the same, since they indicate the same form 
element. Second, the larger rectangle revealed a bug in our 
system where a single worker drew two overlapping 
rectangles, and the system counted this is inter-worker 
agreement. 

Phase 2: Labeling Rectangles 
Most of the labels acquired in Phase 2 were correct, and 
unambiguous (41/62 or 66%), though they were not always 
consistent, for instance: 

 Yes (Employment current employer or previous) 
 employment(current or previous)-no 

The next 31% (19/62) were ambiguous, meaning that the 
same label could apply equally well to more than one form 
element. For instance, “YES”, since four checkboxes had 
this label. Note that our instructions simply asked workers 
to label the rectangle, so this is not a case of cheating, but 
rather underspecified instructions. It is reassuring, however, 
than many workers provided unique labels anyway. 

The final 3 labels were wrong. Two were instances of a 
checkbox in the middle of a long sequence of checkbox-
label-checkbox-label: 

 

In this case, workers sometimes gave the left label when 
they should have given the right label. It is possible to 
determine which label is correct only by looking at the 
checkboxes on the extreme ends. Note that this is a 
symptom of poor form design, suggesting that our process 
may used to detect usability errors of this sort. 

The final mistake came labeling the rectangle below: 

 

We can infer from context that the label is a type of 
biological relationship, and the first letter is “s”, but the 
scan quality is poor. The incorrect winning label was 
“SON”, whereas one worker suggested the better label 
“Patient Relationship to Insured – Self”. 

Phase 3: Human OCR 
Overall the OCR process seems to work extremely well, 
although we don’t have the ground truth for these forms, so 

all we really know is that MTurk workers agree with the 
author’s own guesses about people’s handwriting. We do 
know that workers made at least one mistake: 

 

We know these dates indicate the birth-year of a single 
individual, so they should be the same, however, workers 
converged on “1957” for the first date, and “1952” for the 
second. However, this seems understandable, since the “2” 
in the first date has many qualities of a “7”. 

Note that we included a special instruction to deal with 
checkboxes: “just write ‘check’ for check marks.” Out of 
261 instances of a check in a box, workers converged on the 
guess “check” 229 times (88%). Only four times did 
workers converge on “x” as the answer, where the other 28 
times people agreed on a value like “M”, which was the 
label of the checkbox. 

We encountered another interesting problem on forms: 
people using words like "same" to refer to information on 
other parts of the form: 

 

This may be difficult to overcome while preserving privacy, 
but maybe not. If people can see a blank form, they may be 
able to provide a useful guess about which other form 
element the "same" is probably referring to and recommend 
that another worker look at both fields together. 

DISCUSSION AND FUTURE WORK 
Our work generated insights that should be applicable in 
broader contexts. 

Independent Agreement  
Bernstein et al. [2] cite independent agreement – multiple 
workers generating the same response, independently – as a 
good sign that a response is correct. Our results corroborate 
this insight. For instance, in Phase 1, we only keep 
rectangles that multiple workers draw in the same place, 
and these tend to be correct. In fact, in one pilot experiment, 
we had multiple workers draw all the rectangles for a form, 
without seeing any other worker's submissions, and while 
no single worker got them all correct, the set of 
independently agreed upon rectangles was correct. 

Note that this approach has limitations. The chance of 
obtaining independent agreement decreases as a question 
becomes more difficult or has too many possible correct 
answers. Hence, researching crowdsourcing quality of 
service is still an important direction for us. 

Dynamic Partitioning  
Drawing many rectangles on a form presents an interesting 
challenge: how do we partition the task so that no worker 
needs to do all the work? The problem is that the form is 
difficult to break into pieces that can be processed 



 

independently. For instance, showing people a cropped 
window of the form might result in fields straddling the 
edge of that window. Our solution is dynamic partitioning, 
where we show each worker what has been done so far, so 
that they can decide for themselves where to make the next 
contribution. This approach may generalize to other 
problems which are difficult to break into clearly defined 
pieces. Note that this approach is parallel in the sense that 
each part of the problem is processed by a subset of the 
workers. However, it is not parallel in the sense of having 
workers work simultaneously, since we must wait for a 
worker to complete their work before showing their results 
to the next worker. 

Risk of Piecework 
When we divide a task into small pieces, there is a risk that 
workers may make mistakes which could be avoided with 
global knowledge about other pieces. For instance, in Phase 
2, workers labeling a rectangle do not know what labels are 
being given to other rectangles, so they have no way to 
establish a consistent naming convention. (Contrast this 
with Phase 1, where rectangles from previous workers act 
as examples to subsequent workers). Also, in Phase 3, the 
example of the word "same" appearing in a box shows how 
obscuring the rest of the form prevents the worker from 
locating the intended value for the given field. 

Human Exception Handling 
When humans encounter tasks for which the instructions 
are poorly specified or ambiguous, they often try to make a 
good faith effort to solve the problem. For instance, in 
Phase 2, labelers would often write things like "Other 
Accident? -- yes", instead of just "Yes", even though the 
instructions did not say that the label needed to be unique. 
Also, in Phase 3, some check marks were OCRed as the 
label next to the checkbox (e.g. “M”), which is an option 
we had considered writing into the instruction. Of course, in 
this case, they were disobeying our instruction to write 
"check" when they see a check. However, it is interesting 
that these workers would have done something reasonable 
even without that instruction. 

These findings suggest that it may be possible to write 
better, more succinct instructions, if we have a better 
understanding of how humans will naturally handle 
underspecified instructions. It also suggests an interesting 
direction for future research: can we design tasks that take 
advantage of human exception handling, perhaps providing 

an interface for people to notify the system when 
instructions are ambiguous?   
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