
Platform Considerations in Human Computation

Adam Marcus, Eugene Wu,
David R. Karger, Samuel Madden, Robert C. Miller

MIT CSAIL
32 Vassar St., Cambridge MA

{marcua, sirrice, karger, madden, rcm}@csail.mit.edu

ABSTRACT
With the recent growth of interest in human computation,
the number of crowdsourcing platforms and corresponding
workflows has been growing rapidly. This presents problems
for both platform developers, who reimplement the same
building blocks with each new platform, and human compu-
tation workflow developers, who must cope with the increas-
ing complexity of tasks that may span multiple platforms.
In this paper, we describe two systems designed to alleviate
these pain points. Qurk is a system that lets developers de-
scribe workflows in a high-level declarative language, and
which automatically optimizes the workflow across multi-
ple platforms. Djurk is an open source human computation
platform that is both usable out-of-the-box, and provides a
feature-rich starting point for building new crowdsourcing
platforms.

Author Keywords
Human Computation, MTurk, Mechanical, Turk, Databases

AUTHORS’ EXPERIENCE
The authors are currently building a tool called Qurk [12], a
declarative workflow management system that allows human
computation over relational databases. Qurk makes human
computation a first-class citizen in data processing, bringing
with it the benefits of decades of research by the database
community in workflow execution and optimization.

The authors are also in the planning stages of a system called
Djurk, a generalized crowdsourcing platform in which sys-
tems such as Mechanical Turk or ODesk could be imple-
mented. The first platform we will build using Djurk is de-
signed for the data journalism community, but we hope that
it can be the starting point for other platform developers.

In this paper, we describe our vision for human computation
platforms, combining numerous competing platforms built
from a pluggable set of building blocks, and a declarative
workflow system which can span these platforms to make
data processing using humans easier.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

INTRODUCTION
Today’s human computation tasks can be sent to multi-
ple varied platforms including MTurk, ODesk, and re-
CAPTCHA. Each platform is geared toward different tasks,
provides crowd workers with different skills, and has differ-
ent notions of crowd worker reputation and incentives. With
choice comes complexity, complicating the already difficult
task of optimizing human computation workflows for pa-
rameters such as worker compensation, accuracy, and time
to task completion. We first present a system called Qurk
that can automatically optimize these choices without extra
work on behalf of the workflow developer. We then propose
a system called Djurk, aimed at providing human computa-
tion platform developers an easier starting point for building
new crowdsourcing platforms.

DECLARATIVE WORKFLOW MANAGEMENT
Patterns such as Find-Fix-Verify [2] show that interesting
crowdsourced tasks are a multi-stage workflow of related
tasks, rather than carefully-crafted one-off tasks. We have
found that even with tools such as TurkIt [10], building such
workflows on a single platform is a non-trivial process. A
large portion of human computation workflow code is de-
voted to retrieving from and storing data in a storage sys-
tem, verifying human results, and hand-optimizing param-
eters such as task price or the number of workers per task.
As the diversity of human computing platforms increase, im-
plementing workflows that run across all of them will only
become more difficult.

As database researchers, we have noticed that these prob-
lems parallel the traditional data management problems that
databases alleviate through the use of declarative languages.
Declarative queries allow users to describe what they want,
rather than specify how the computation should be per-
formed. We believe that by bringing human computation
workflows into the data processing regime provided by tradi-
tional database systems, the complexities of task and work-
flow specification can be reduced.

To explore the integration of human computation and database
principles, we have built Qurk [12]. Qurk users build com-
plex workflows in a declarative language (currently SQL)
that allows the user to query for data from human computa-
tion platforms much in the same way they can query a tra-
ditional database table. Qurk compiles and runs the human
computation tasks on the ideal platform for the task (at the
moment, we support MTurk). This approach has two key

1

benefits. First, because programmers do not specify the de-
tails of query implementation, there is an opportunity for au-
tomatic optimizations which affect the latency, cost, or qual-
ity of the results. Second, the approach eases the developer’s
burden of implementing low-level optimization details.

While there are a number of interesting systems details, we
refer the reader to [12] and focus the rest of the section on
exciting optimization opportunities.

Optimizations
In addition to traditional database optimization parameters
such as resource consumption and query latency, Qurk pro-
vides parameters for monetary cost and result accuracy. The
optimizations that we outline fall into three categories: 1)
Task Performance, 2) Task Avoidance, and 3) Platform Se-
lection.

Task Performance
Task performance optimizations are concerned with improv-
ing the latency, quality, or reducing the cost of running tasks
on human computation platforms.

Runtime Pricing. If it appears that one type of task takes
longer to complete than others, Qurk can offer more money
for it in order to get a faster result. We can borrow from tech-
niques such as adaptive query processing [7] to accomplish
this goal.

Input Sampling. For large tables that could lead to many
HITs on systems like MTurk, Qurk attempts to sample the
input tables to generate Qurk jobs that uniformly cover the
input space. This is similar to issues that arise in online
query processing [9].

Batch Predicates. When a query contains two filters on
the same table, we can combine them into a single HIT,
decreasing cost. For example, a query with predicates
imgColor(image) == ‘Red’ and imgLabel(image)
== ‘Car’ could present crowd workers with the imgColor
and imgLabel tasks at the same time.

Batch Records. Similarly, if tasks such as image filtering
are simple for workers to perform, we can reduce cost in
exchange for increased worker latency if we send multiple
images to filter with each task.

Avoid Worker Fatigue. Workers may be tasked with
needle-in-a-haystack tasks, such as identifying the location
of a boat lost at sea from satellite imagery. Workers may
experience fatigue in such cases, missing the needle after a
series of haystack examples. We can remove skew from the
data by injecting known matches into the stream of items
workers see to keep them on their toes for potential matches.

Join Heuristics. The space of comparisons required for join
predicates for having turkers combine data from two tables
can be reduced with a preprocessing step identifying nec-
essary join conditions. A naı̈ve join implementation would
require quadratic comparisons between all records of each

table. We can avoid some of these expensive operations by
having workers cluster like items together, and only perform
quadratic join comparisons within clusters.

Task Avoidance
The following optimizations reduce the number of tasks sent
to human computation platforms.

Task Result Cache. Once a HIT has run, its results might
be relevant in the future. For example, if a products ta-
ble has already been ranked in one query, and another query
wishes to rank all red products, the result of the old task
output can be used. Additionally, as explored in TurKit [10],
queries might crash midway, or might be iteratively devel-
oped. In such scenarios, a cache of completed HITs can
improve response time and decrease costs.

Model Training. Recent work by Wais et al. [13] suggests
that there are cases where simple machine learning models
might be superior to crowdworker results for certain budgets
and tasks. Given that learning models and crowd workers
excel in different scenarios, we see two optimization oppor-
tunities. First, where possible, we can use gold standard data
or worker output to train models, which, if they achieve a
certain accuracy, may eventually replace workers on future
tasks. Second, the decision to send a task to the crowd or to
a learning model is an active learning problem of its own.

Platform Selection
The future of human computation features a multitude of
platforms and crowds which are ideal for solving different
tasks. If Qurk is aware of the various platforms’ configu-
rations, it can split workflows into tasks to be assigned to
different platforms. For example, when compiling a task to
find similar images of flowers from two tables of plant im-
ages, Qurk can first send images to be labelled by an image
labelling game, and then send pictures of flowers to MTurk
for similarity comparisons. As users change their prefer-
ences between money, accuracy, and task completion time,
Qurk can adjust the platform that receives each task.

NEW CROWDSOURCING PLATFORMS
Qurk makes the process of building human computation
workflows on existing crowdsourcing platforms simpler and
more efficient for requesters. There are cases, however,
where existing platforms do not meet the needs of requesters.
We are designing an extensible open source crowdsourcing
platform called Djurk that will allow platform designers to
easily implement platforms with characteristics optimized
for different worker tasks.

There are several motivations for Djurk. First, many or-
ganizations are already implementing custom human com-
putation platforms (e.g., The Guardian’s MP expenses plat-
form1), and re-implement the same building blocks as other
crowdsourced platforms. An open implementation of these
blocks can allow organizations to innovate toward features
unique to their tasks. Second, a hosted public service may
1http://mps-expenses.guardian.co.uk/

2

simply not be usable, due to data sensitivity or expertise re-
quirements. For example, the New York Times was limited
in how much of the WikiLeaks Iraq dataset it could dedupli-
cate by hand before a deadline, but the data was too sensi-
tive to be placed on Mechanical Turk2. Our first goal with
Djurk is to build a data journalism-oriented crowdsourcing
platform that is easily deployable behind a firewall.

In the process of designing Djurk, we compiled an (incom-
plete) list of important platform characteristics:

Identity. Requesters are currently identified by name,
whereas workers are given an opaque unique identifier. In
order to assist with platform portability, both sides of the ta-
ble should be provided with identities through protocols like
OpenID 3. These identities would also be connected to repu-
tation and provenance profiles, which would help requesters
and workers better decide which tasks to perform.

Reputation. Requesters desire some knowledge of the qual-
ity of work performed by potential workers. Workers simi-
larly wish to work for requesters with a history of fair treat-
ment and fast payment turnaround. MTurk currently of-
fers requesters a coarse-grained notion of turker quality, and
turkers have created their own message boards to identify
requesters of note.

Requesters and workers can benefit from better reputation
systems. For example, a platform can provide more detail
into task types at which a worker excelled. To assist work-
ers in traversing the various specialized human computa-
tion platforms, worker reputation profiles should be portable
across human computation platforms so that they can estab-
lish themselves as dependable quickly on a platform geared
toward a specific task.

Provenance. There are many crowdsourced tasks for which
accountability is a key factor. For example, outsourced in-
surance form processing requires a provenance trail iden-
tifying which workers had access to sensitive information.
In these situations, the rich body of research into database
provenance can assist requesters in digging into the output
of a crowd-powered workflow. Provenance would help iden-
tify and reverse problems such a faulty task description or
worker when they surface.

Incentive. MTurk incentivises workers through monetary
compensation, while other systems incentivize task comple-
tion with gameplay. Chandler and Kapelner identified that
incentives other than money, such as context, can motivate
turkers [5]. Given the multitude of incentive systems, human
computation platforms should offer a number and combina-
tion of incentives to workers.

Worker Interface. MTurk relies on a task completion in-
terface which is form-based, and generally relies on work-
ers being at a PC to complete tasks. txteagle [8] shows that

2http://www.cjr.org/the_news_frontier/
visualizing_the_iraq_war_logs.php?page=all
3http://openid.net/

this interface could be mobile, and outsourced programming
tasks on ODesk would ideally provide an interface which is
suited for program development. Djurk could provide spe-
cialized interfaces and contexts in which workers can com-
plete tasks.

Requester Interface. Task generation can start in many
forms, ranging from uploading a csv file in MTurk, to us-
ing a phone to ask a question on ChaCha. For task defini-
tion to move to the mainstream, we envision a community-
maintained collection of templates for various tasks, provid-
ing crowdsourcing by example functionality to requesters.

Requester/Worker Coordination. As we reconsider worker
and requester interfaces, we can also reconsider their inter-
actions. Rather than transactional request-reponse tasks, a
crowdsourcing platform should provide iterative refinement
of task definition and worker output. Crowdsourcing plat-
forms which result in creative output, such as ODesk already
provide such mechanisms. Additionally, providing workers
with the ability to discuss task completion with other work-
ers might facilitate larger-scale task definition and coordina-
tion.

Both forms of coordination might be synchronous or asyn-
chronous. For example, a logo design crowdsourcing plat-
form might allow asynchronous out-of-band communication
for iterative design cycles. A crowdsourced development
platform mgiht allow workers to coordinate through syn-
chronous chat for pair-programming sessions.

Requester/Worker API. One complaint we often hear is
that MTurk’s interface does not empower requesters or
workers enough to define, find, or perform tasks most ef-
fectively. To ensure that Djurk’s interface does not hinder
either party, a rich API should be available to support task
creation, task search through novel interfaces.

Finally, Qurk can also perform more powerful optimizations
if the platforms expose the above characteristics, as well
as statistics about its worker population, such as expertise,
latency and costs. For example, by know the expertise of
workers on different platforms, Qurk can better route tasks
across these platforms.

CONCLUSION
As the number of human computation platforms and crowd-
sourced data processing needs increase, the need for systems
to simplify workflow creation will continue to grow. To this
end, we presented two systems to alleviate the problems for
both platform and workflow developers. On the platform
side, we introduced Djurk, an open source platform that can
easily be extended for specialized needs. We also presented
Qurk, a system for declaratively specifying data processing
human computation workflows, which optimizes such work-
flows on behalf of the developer.

AUTHOR BIOGRAPHIES
Adam Marcus and Eugene Wu are graduate students at
MIT’s CSAIL. Adam’s focus is on the intersection between

3

social computing and database systems. His most relevant
publications include TwitInfo [11], a system for crowdsourc-
ing news from microblogs, FeedMe [3], a system for friend-
sourcing web-based content sharing, and DataPress [1], a
system for facilitating data- and vizualization-oriented dis-
cussions in blog entries. He recently presented Qurk at
the Conference on Innovative Database Research [12], and
has published more database performance-oriented papers
in VLDB and WWW. Eugene studies database storage and
query performance, as well as provenance in diverse data
workflows. He has published WebTables [4], a system for
extracting data from from human-generated tables, and has
built systems such as SASE [14] for stream data processing,
TrajStore [6] for location-based data, and Shinobi [15] for
high-skew workloads.

REFERENCES

1. E. Benson, A. Marcus, F. Howahl, and D. R. Karger.
Talking about data: Sharing richly structured
information through blogs and wikis. In International
Semantic Web Conference (1), pages 48–63, 2010.

2. M. S. Bernstein et al. Soylent: a word processor with a
crowd inside. In UIST ’10: Proceedings of the 23nd
annual ACM symposium on User interface software
and technology, pages 313–322, New York, NY, USA,
2010.

3. M. S. Bernstein, A. Marcus, D. R. Karger, and R. C.
Miller. Enhancing directed content sharing on the web.
In CHI, pages 971–980, 2010.

4. M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on
the web. PVLDB, 1(1):538–549, 2008.

5. D. Chandler and A. Kapelner. Breaking monotony with
meaning: Motivation in crowdsourcing markets.
Technical report, University of Chicago, 2010.

6. P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore:
An adaptive storage system for very large trajectory
data sets. In ICDE, 2010.

7. A. Deshpande, Z. G. Ives, and V. Raman. Adaptive
query processing. Foundations and Trends in
Databases, 1(1):1–140, 2007.

8. N. Eagle. txteagle: Mobile crowdsourcing. In
Internationalization, Design and Global Development.
Springer, 2009.

9. P. J. Haas et al. Selectivity and cost estimation for joins
based on random sampling. J. Comput. Syst. Sci.,
52(3):550–569, 1996.

10. G. Little et al. Turkit: human computation algorithms
on mechanical turk. In UIST ’10: Proceedings of the
23nd annual ACM symposium on User interface
software and technology, pages 57–66, 2010.

11. A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger,
R. C. Miller, and S. Madden. Twitinfo: Aggregating
and visualizing microblogs for event exploration. In
CHI, pages 971–980, 2011.

12. A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C.
Miller. Crowdsourced databases: Query processing
with people. In CIDR 2011.

13. P. Wais, S. Lingamneni, D. Cook, J. Fennell,

B. Goldenberg, D. Lubarov, and D. Martin. Towards
building a high-quality workforce with mechanical
turk. In Computational Social Science and the Wisdom
of Crowds Workshop, NIPS 2010.

14. E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
Conference, pages 407–418, 2006.

15. E. Wu and S. Madden. Partitioning techniques for
fine-grained indexing. In ICDE, 2011.

4

